1
|
Mei Z, Li H, Huang C, Ma S, Li Y, Deng P, Zhou S, Qian A, Yang B, Li J. Extracellular vesicles from adipose-derived stromal/stem cells reprogram dendritic cells to alleviate rat TMJOA by transferring mitochondria. J Nanobiotechnology 2025; 23:389. [PMID: 40426246 PMCID: PMC12117725 DOI: 10.1186/s12951-025-03478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) urgently needs regenerative therapies due to the limited effects of traditional treatments. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are considered a potent alternative for MSC therapy for the treatment of TMJOA. However, the specific mechanisms remain inadequately investigated. In this study, we explored how EVs from adipose-derived stromal/stem cells (ASCs) influence the TMJOA model triggered by Complete Freund's Adjuvant in rats and their impact on the state of dendritic cells (DCs) under pathological conditions. Subsequently, we conducted transcriptomic and metabolomic analyses to elucidate the specific mechanisms by which EVs affect DCs. Mechanistically, we demonstrate that EVs transferred functional mitochondria to DCs, which reverses their metabolic states. The internalized functional mitochondria from EVs activate the MAPK/ERK1/2/FoxO1/autophagy pathway, which causes the metabolic reprogramming of DCs and facilitates the achievement of therapeutic effects. These findings provide a mechanistic rationale for utilizing ASCs-EVs as cell-free alternatives to MSC transplantation in TMJOA therapy.
Collapse
Affiliation(s)
- Ziyi Mei
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Hanyue Li
- Department of Stomatology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chuling Huang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Shiyong Ma
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, The Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuejia Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Pingmeng Deng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Sha Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Aizhuo Qian
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Bin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China.
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Ventura C, Bondioli E, de Vita R, Rigotti G, Morigi F, Scarpellini F, Di Fede F, Nanni-Costa A, Melandri D. Autologous Cryopreserved Adipose Tissue Using an Innovative Technique: An In Vitro Biological Characterization. Aesthet Surg J 2024; 45:NP16-NP24. [PMID: 39302643 DOI: 10.1093/asj/sjae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Utilization of autologous adipose tissue transplantation in plastic and orthopedic surgery such as breast reconstruction and intra-articular injection has become an attractive surgical treatment with satisfactory clinical outcomes. Nevertheless, repeated liposuctions necessary to harvest fatty tissue, normally performed with sedation or general anesthesia, may represent a noteworthy concern. OBJECTIVES The aim of this study was to demonstrate through an in vitro characterization the validity of the surgical option of cryopreserved autologous adipose tissue harvested in a single shot for repeated graft transfer in breast reconstruction without impairment of cell viability and sterility. METHODS Adipose tissue was collected by standard liposuction from patients who needed numerous fat grafting procedures for breast reconstruction. According to an innovative and patented cryopreservation method, autologous adipose tissue was subsequently fractioned in a sterile bag system and frozen at the RER Tissue Bank of the Emilia Romagna Region. Each graft was evaluated for sterility and cell viability immediately after harvesting, and 1, 3, 6, 12, and preliminarily 18 months after cryopreservation and thawing. RESULTS In vitro results showed that after processing, middle-term and long-term cryopreservation, and subsequent thawing, autologous cryopreserved adipose tissue retained absence of bacterial contamination, high cellular viability, and unmodified histomorphological properties, thereby ensuring maintenance of the stromal vascular niche and the filling properties in different multistep surgical procedures. CONCLUSIONS In vitro study and sterility assessment showed that autologous cryopreserved adipose tissue grafting is a safe procedure, making it possible to avoid multiple liposuction surgery. No impairment of sterility, cell viability, or morphology was observed over time.
Collapse
|
3
|
Syed AN, Landrum K, Ganley TJ. Platelet-rich plasma and other injectables in the young athlete. JOURNAL OF THE PEDIATRIC ORTHOPAEDIC SOCIETY OF NORTH AMERICA 2024; 6:100008. [PMID: 40433253 PMCID: PMC12088118 DOI: 10.1016/j.jposna.2024.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 05/29/2025]
Abstract
Pediatric sports participation and subsequent injuries have increased in parallel. Additionally, pediatric athletes and families are highly invested in rapid return to pre-injury status and the ability to sustain high impact loads and tension. Recently, an increase and diversification of biologically derived substances, known as orthobiologics, have been used to accelerate tissue healing. While commonly used in adults, the indications are ambiguous, and evidence for effectiveness is conflicting. Despite this, an interest in pediatric indications for orthobiologics has increased as both a standalone intervention and as a supplement to current treatment. There is a dearth of literature pertaining to the pediatric population, which warrants a review of what research has been performed. The purpose of this review was to critically examine the indications and results of orthobiologics in immature athletes. Much of the existing literature is composed of case studies or studies performed with relatively small sample sizes. As such, we believe more research is needed in almost every context for absolute guidelines and recommendations to be established. While orthobiologics have been purported to provide a significant healing benefit to augment the treatment of sports injuries, we find no additional benefit compared to standard treatment. Key Concepts 1)While orthobiologics have been used in small sample sizes to provide additional healing for pediatric patients being treated for sports-related injuries, there is little research in large cohorts of pediatric athletes.2)Adding to the ambiguity, the literature that does exist presents conflicting findings regarding benefits of orthobiologics.3)Orthobiologics have the potential to provide significant advanced healing benefits, however significantly more research of larger cohort size, higher evidence level, and a pediatric-only population is necessary for absolute guidelines and recommendations to be made.
Collapse
Affiliation(s)
- Akbar N. Syed
- Division of Orthopaedics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin Landrum
- Division of Orthopaedics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Theodore J. Ganley
- Division of Orthopaedics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
4
|
Methodological Flaws in Meta-Analyses of Clinical Studies on the Management of Knee Osteoarthritis with Stem Cells: A Systematic Review. Cells 2022; 11:cells11060965. [PMID: 35326416 PMCID: PMC8946093 DOI: 10.3390/cells11060965] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Conclusions of meta-analyses of clinical studies may substantially influence opinions of prospective patients and stakeholders in healthcare. Nineteen meta-analyses of clinical studies on the management of primary knee osteoarthritis (pkOA) with stem cells, published between January 2020 and July 2021, came to inconsistent conclusions regarding the efficacy of this treatment modality. It is possible that a separate meta-analysis based on an independent, systematic assessment of clinical studies on the management of pkOA with stem cells may reach a different conclusion. (2) Methods: PubMed, Web of Science, and the Cochrane Library were systematically searched for clinical studies and meta-analyses of clinical studies on the management of pkOA with stem cells. All clinical studies and meta-analyses identified were evaluated in detail, as were all sub-analyses included in the meta-analyses. (3) Results: The inconsistent conclusions regarding the efficacy of treating pkOA with stem cells in the 19 assessed meta-analyses were most probably based on substantial differences in literature search strategies among different authors, misconceptions about meta-analyses themselves, and misconceptions about the comparability of different types of stem cells with regard to their safety and regenerative potential. An independent, systematic review of the literature yielded a total of 183 studies, of which 33 were randomized clinical trials, including a total of 6860 patients with pkOA. However, it was not possible to perform a scientifically sound meta-analysis. (4) Conclusions: Clinicians should interpret the results of the 19 assessed meta-analyses of clinical studies on the management of pkOA with stem cells with caution and should be cautious of the conclusions drawn therein. Clinicians and researchers should strive to participate in FDA and/or EMA reviewed and approved clinical trials to provide clinically and statistically valid efficacy.
Collapse
|
5
|
Panero AJ, Hirahara AM, Podesta L, Jamali AA, Andersen W, Smith AA. Allograft Tissues. ATLAS OF INTERVENTIONAL ORTHOPEDICS PROCEDURES 2022:89-101. [DOI: 10.1016/b978-0-323-75514-6.00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Zmerly H, Moscato M, Akkawi I. Assessment and Management of Loose Bodies in the Knee Joint and Related Disease: A Narrative Review. Curr Rheumatol Rev 2022; 18:12-19. [PMID: 34674623 DOI: 10.2174/1573397117666211021165807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/09/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Loose bodies are frequently encountered during clinical activity and are a common finding during knee arthroscopy. Usually, treatment consists of the removal of loose bodies, which can be challenging even for experienced surgeons. The excision alone is not always the complete treatment, because loose bodies are generally secondary to other diseases that can cause persistent symptoms with the risk of new loose body formation. The aim of this narrative review is to show the clinical, imaging, and arthroscopic evaluation of loose bodies in order to plan optimal treatment. METHODS A comprehensive search of PubMed was conducted to find the most recent and relevant studies investigating aetiopathogenesis, the assessment tools, and the therapeutic strategies for loose bodies in the knee and their related diseases. RESULTS When dealing with a loose body, the first issue is the evaluation of the intra-articular fragment (location, size, number, symptoms) and its aetiopathogenesis by identifying the underlying pathology (e.g., osteochondritis dissecans, osteoarthritis, chondral defect, tumour-like lesions, rheumatoid arthritis, etc.). In the case of symptomatic intra-articular loose bodies, treatment consists of fragment removal and the management of related diseases (e.g.., lifestyle modification, physiotherapy, pharmacological, and surgical treatment). CONCLUSION Loose bodies are not separate entities and in addition to their pathological aspect, must be evaluated within the context of the underlying disease. Correct assessment and comprehensive management allow for relief of symptomatology and prevention of loose body formation by removal and treatment of the associated diseases.
Collapse
Affiliation(s)
- Hassan Zmerly
- Orthopaedic Department, Villa Erbosa Hospital, Via Dell'Arcoveggio 50/2, 40129, Bologna, Italy
- UCM Malta - Ludes Lugano Campus, Switzerland
| | - Manuela Moscato
- Orthopaedic Department, Villa Erbosa Hospital, Via Dell'Arcoveggio 50/2, 40129, Bologna, Italy
| | - Ibrahim Akkawi
- Orthopaedic Department, Villa Erbosa Hospital, Via Dell'Arcoveggio 50/2, 40129, Bologna, Italy
| |
Collapse
|
7
|
Peláez P, Damiá E, Torres-Torrillas M, Chicharro D, Cuervo B, Miguel L, del Romero A, Carrillo JM, Sopena JJ, Rubio M. Cell and Cell Free Therapies in Osteoarthritis. Biomedicines 2021; 9:1726. [PMID: 34829953 PMCID: PMC8615373 DOI: 10.3390/biomedicines9111726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common articular disease in adults and has a current prevalence of 12% in the population over 65 years old. This chronic disease causes damage to articular cartilage and synovial joints, causing pain and leading to a negative impact on patients' function, decreasing quality of life. There are many limitations regarding OA conventional therapies-pharmacological therapy can cause gastrointestinal, renal, and cardiac adverse effects, and some of them could even be a threat to life. On the other hand, surgical options, such as microfracture, have been used for the last 20 years, but hyaline cartilage has a limited regeneration capacity. In recent years, the interest in new therapies, such as cell-based and cell-free therapies, has been considerably increasing. The purpose of this review is to describe and compare bioregenerative therapies' efficacy for OA, with particular emphasis on the use of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP). In OA, these therapies might be an alternative and less invasive treatment than surgery, and a more effective option than conventional therapies.
Collapse
Affiliation(s)
- Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Elena Damiá
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Belén Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Ayla del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Jose Maria Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Joaquín J. Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| |
Collapse
|
8
|
Alt EU, Schmitz C, Bai X. Perspective: Why and How Ubiquitously Distributed, Vascular-Associated, Pluripotent Stem Cells in the Adult Body (vaPS Cells) Are the Next Generation of Medicine. Cells 2021; 10:2303. [PMID: 34571951 PMCID: PMC8467324 DOI: 10.3390/cells10092303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
A certain cell type can be isolated from different organs in the adult body that can differentiate into ectoderm, mesoderm, and endoderm, providing significant support for the existence of a certain type of small, vascular-associated, pluripotent stem cell ubiquitously distributed in all organs in the adult body (vaPS cells). These vaPS cells fundamentally differ from embryonic stem cells and induced pluripotent stem cells in that the latter possess the necessary genetic guidance that makes them intrinsically pluripotent. In contrast, vaPS cells do not have this intrinsic genetic guidance, but are able to differentiate into somatic cells of all three lineages under guidance of the microenvironment they are located in, independent from the original tissue or organ where they had resided. These vaPS cells are of high relevance for clinical application because they are contained in unmodified, autologous, adipose-derived regenerative cells (UA-ADRCs). The latter can be obtained from and re-applied to the same patient at the point of care, without the need for further processing, manipulation, and culturing. These findings as well as various clinical examples presented in this paper demonstrate the potential of UA-ADRCs for enabling an entirely new generation of medicine for the benefit of patients and healthcare systems.
Collapse
Affiliation(s)
- Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA
- MD Anderson Cancer Center, University of Texas, Houston, TX 77054, USA
- Isar Klinikum Munich, 80331 Munich, Germany
| | - Christoph Schmitz
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians University of Munich, 80336 Munich, Germany;
| | - Xiaowen Bai
- Heart and Vascular Institute, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- MD Anderson Cancer Center, University of Texas, Houston, TX 77054, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
Comparison of the Donor Age-Dependent and In Vitro Culture-Dependent Mesenchymal Stem Cell Aging in Rat Model. Stem Cells Int 2021; 2021:6665358. [PMID: 34093710 PMCID: PMC8140846 DOI: 10.1155/2021/6665358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/12/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Clinical experiments suggest that mesenchymal stem cells (MSCs) may be useful for tissue repair therapies or treatment of the autoimmune disorders. There is still lack of consensus concerning the age limit of MSC donors, majority of researchers suggest the autologous MSC therapies of patients not exceeding age limit of 55-60 yrs. The purpose of our study was to compare the selected parameters of MSCs from adipose tissue (adipose stem cell, ASC) collected from young and old rats of ages corresponding to patient's ages 25 yrs. and 80 yrs., respectively. The differences of parameters of ASCs from young and old animals were compared with the differences between ASCs from short-term (3 passage) and long-term (30 passage) in vitro culture. Cell morphology, surface marker expression, growth potential, metabolic activity, β-galactosidase activity, clonogenic potential, angiogenic potential, and differentiation ability of ASCs from young and aged animals and from in vitro cultures at 3rd and 30th passages were compared and analyzed. It may be concluded that ASCs may be applied for autologous transplantations in aged patients. Comparison of ASC aging dynamics depending on host aging or in vitro culture duration suggests that long-term in vitro culture may affect ASCs more than natural aging process of their host. We suggest that ASCs expanded in vitro prior to their clinical use must be carefully screened for the possible aging effects resulting not only from donor age, but from the duration of their in vitro culture.
Collapse
|
10
|
Freitag J, Wickham J, Shah K, Tenen A. Effect of autologous adipose-derived mesenchymal stem cell therapy in the treatment of an osteochondral lesion of the ankle. BMJ Case Rep 2020; 13:13/7/e234595. [PMID: 32641315 PMCID: PMC7348644 DOI: 10.1136/bcr-2020-234595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Osteochondral lesions (OCLs) of the talus are rare but can be associated with significant morbidity and may lead to the development of osteoarthritis. An improved understanding of the action of mesenchymal stem cells (MSCs) has seen renewed interest in their role in cartilage repair, with early preclinical and clinical research showing benefits in symptomatic and structural improvement. A 42-year-old man presented with an unstable OCL of the talus and onset of early osteoarthritis with a history of multiple previous ankle arthroscopies for ankle impingement. The patient underwent arthroscopic removal of the OCL in combination with adipose-derived MSC therapy. The patient reported progressive improvement as measured by the validated Foot and Ankle Disability Index. Repeat MRI with additional T2 mapping techniques showed successful regeneration of hyaline-like cartilage. This case is the first to show the successful use of MSC therapy in the management of an ankle OCL. Trial registration: Australian New Zealand Clinical Trials Registry - ACTRN12617000638336.
Collapse
Affiliation(s)
- Julien Freitag
- Melbourne Stem Cell Centre, Box Hill North, Victoria, Australia .,School of Biomedical Sciences, Charles Sturt University - Orange Campus, Orange, New South Wales, Australia.,Magellan Stem Cells, Box Hill North, Victoria, Australia
| | - James Wickham
- School of Biomedical Sciences, Charles Sturt University - Orange Campus, Orange, New South Wales, Australia
| | - Kiran Shah
- Magellan Stem Cells, Box Hill North, Victoria, Australia.,Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Abi Tenen
- Melbourne Stem Cell Centre, Box Hill North, Victoria, Australia.,Magellan Stem Cells, Box Hill North, Victoria, Australia.,School of Primary Health Care, Monash University, Notting Hill, Victoria, Australia
| |
Collapse
|
11
|
Freitag J, Shah K, Wickham J, Tenen A. Effect of autologous adipose-derived mesenchymal stem cell therapy in combination with autologous platelet-rich plasma in the treatment of elbow tendinopathy. BMJ Case Rep 2020; 13:13/6/e234592. [PMID: 32606116 PMCID: PMC7328806 DOI: 10.1136/bcr-2020-234592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tendinopathy is a common condition of both the athletic and general population and can be associated with significant pain and disability. The ability of mesenchymal stem cells (MSCs) to differentiate along a mesodermal cell lineage, including tenocytes, and secrete various bioactive regenerative and anti-inflammatory molecules has seen them considered as a future reparative therapy for tendinopathy. Preclinical trials with MSCs have shown promising positive functional and structural outcomes in several connective tissue related conditions. A 52-year-old male professional masters golfer presents with a clinical history of common extensor origin tendinopathy of the elbow. Subsequent formal ultrasound showed evidence of a large intrasubstance tear. The patient underwent intratendinous autologous adipose-derived MSC therapy in combination with autologous platelet-rich plasma. Following treatment, the patient reported progressive improvement as measured by the validated Numeric Pain Rating Scale and Patient-Rated Tennis Elbow Evaluation score. Repeat imaging showed successful regeneration of tendon-like tissue.
Collapse
Affiliation(s)
- Julien Freitag
- School of Biomedical Sciences, Charles Sturt University, Orange Campus, Orange, New South Wales, Australia .,Melbourne Stem Cell Centre, Box Hill North, Victoria, Australia.,Magellan Stem Cells, Box Hill North, Victoria, Australia
| | - Kiran Shah
- Magellan Stem Cells, Box Hill North, Victoria, Australia
| | - James Wickham
- School of Biomedical Sciences, Charles Sturt University, Orange Campus, Orange, New South Wales, Australia
| | - Abi Tenen
- Melbourne Stem Cell Centre, Box Hill North, Victoria, Australia.,Magellan Stem Cells, Box Hill North, Victoria, Australia.,School of Primary Health Care, Monash University, Notting Hill, Victoria, Australia
| |
Collapse
|
12
|
Kunze KN, Burnett RA, Wright-Chisem J, Frank RM, Chahla J. Adipose-Derived Mesenchymal Stem Cell Treatments and Available Formulations. Curr Rev Musculoskelet Med 2020; 13:264-280. [PMID: 32328959 DOI: 10.1007/s12178-020-09624-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The use of human adipose-derived mesenchymal stem cells (ADSCs) has gained attention due to its potential to expedite healing and the ease of harvesting; however, clinical evidence is limited, and questions concerning optimal method of delivery and long-term outcomes remain unanswered. RECENT FINDINGS Administration of ADSCs in animal models has been reported to aid in improved healing benefits with enhanced repair biomechanics, superior gross histological appearance of injury sites, and higher concentrations of growth factors associated with healing compared to controls. Recently, an increasing body of research has sought to examine the effects of ADSCs in humans. Several available processing techniques and formulations for ADSCs exist with evidence to suggest benefits with the use of ADSCs, but the superiority of any one method is not clear. Evidence from the most recent clinical studies available demonstrates promising outcomes following treatment of select musculoskeletal pathologies with ADSCs despite reporting variability among ADSCs harvesting and processing; these include (1) healing benefits and pain improvement for rotator cuff and Achilles tendinopathies, (2) improvements in pain and function in those with knee and hip osteoarthritis, and (3) improved cartilage regeneration for osteochondral focal defects of the knee and talus. The limitation to most of this literature is the use of other therapeutic biologics in combination with ADSCs. Additionally, many studies lack control groups, making establishment of causation inappropriate. It is imperative to perform higher-quality studies using consistent, predictable control populations and to standardize formulations of ADSCs in these trials.
Collapse
Affiliation(s)
- Kyle N Kunze
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Robert A Burnett
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Joshua Wright-Chisem
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Rachel M Frank
- Department of Orthopaedic Surgery, Division of Sports Medicine, University of Colorado School of Medicine, Boulder, CO, USA
| | - Jorge Chahla
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
13
|
Intra-articularly injected mesenchymal stem cells promote cartilage regeneration, but do not permanently engraft in distant organs. Sci Rep 2019; 9:10153. [PMID: 31300685 PMCID: PMC6626061 DOI: 10.1038/s41598-019-46554-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
Intra-articular (IA) injection of mesenchymal stem cells (MSCs) promotes articular cartilage repair. However, cell fate and action after transplantation remain unclear. This study aimed at evaluating the biodistribution and efficacy of MSCs after IA injection. We used an immunocompetent, dual transgenic rat model, which is based on donor rats ubiquitously expressing heat stable human placental alkaline phosphatase (ALPP), and recipient rats expressing a heat sensitive ALPP form. A focal cartilage defect was created in the patellofemoral groove of recipient rats. Bone marrow-derived MSCs isolated from donor rats were injected into the synovial cavity of recipients, and cell tracking was performed in distant organs and knees over 6 months post-injection. A few donor MSCs were observed in the lung of one of the recipients, 1 day post-injection. We failed to detect donor MSCs in any of the studied tissues at all later time points. IA-injected MSCs remained in the synovial cavity, engrafted within the cartilage lesion, and were detectable up to 1 month post-injection. Although the number of MSCs decreased over time, MSCs injection promoted cartilage regeneration as evidenced by histology and immunofluorescent collagen staining. Our study supports the safety and efficacy of using MSCs for cartilage repair via IA delivery.
Collapse
|
14
|
Torres-Torrillas M, Rubio M, Damia E, Cuervo B, Del Romero A, Peláez P, Chicharro D, Miguel L, Sopena JJ. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of Musculoskeletal Diseases. Int J Mol Sci 2019; 20:ijms20123105. [PMID: 31242644 PMCID: PMC6627452 DOI: 10.3390/ijms20123105] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic musculoskeletal (MSK) pain is one of the most common medical complaints worldwide and musculoskeletal injuries have an enormous social and economical impact. Current pharmacological and surgical treatments aim to relief pain and restore function; however, unsatiscactory outcomes are commonly reported. In order to find an accurate treatment to such pathologies, over the last years, there has been a significantly increasing interest in cellular therapies, such as adipose-derived mesenchymal stem cells (AMSCs). These cells represent a relatively new strategy in regenerative medicine, with many potential applications, especially regarding MSK disorders, and preclinical and clinical studies have demonstrated their efficacy in muscle, tendon, bone and cartilage regeneration. Nevertheless, several worries about their safety and side effects at long-term remain unsolved. This article aims to review the current state of AMSCs therapy in the treatment of several MSK diseases and their clinical applications in veterinary and human medicine.
Collapse
Affiliation(s)
- Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Monica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Elena Damia
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Belen Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Ayla Del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Joaquin J Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| |
Collapse
|
15
|
Freitag J, Wickham J, Shah K, Tenen A. Effect of autologous adipose-derived mesenchymal stem cell therapy in the treatment of acromioclavicular joint osteoarthritis. BMJ Case Rep 2019; 12:12/2/e227865. [PMID: 30819682 PMCID: PMC6398814 DOI: 10.1136/bcr-2018-227865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aim of this case report is to evaluate the efficacy of mesenchymal stem cell (MSC) therapy in the treatment of small joint osteoarthritis (OA). Acromio-clavicular (AC) joint OA is an under-diagnosed and yet frequent source of shoulder pain. MSCs have shown evidence of benefit in the treatment of knee OA. This is the first report to describe the use of MSC therapy in OA of the upper limb. A 43-year-old patient presents with painful AC joint OA and undergoes MSC therapy. The patient reported pain and functional improvement as assessed by the Disability of Arm, Shoulder and Hand Score and Numeric Pain Rating Scale. Imaging at 12 months showed structural improvement with reduction in subchondral oedema, synovitis and subchondral cysts. This case is the first to show the benefit of MSC therapy in the treatment of small joint arthropathy and also of the upper limb. Trial registration number: Australian New Zealand Clinical Trials Registry (ACTRN12617000638336).
Collapse
Affiliation(s)
- Julien Freitag
- School of Biomedical Science, Charles Sturt University, Orange, New South Wales, Australia.,Melbourne Stem Cell Centre, Box Hill North, Victoria, Australia.,Magellan Stem Cells, Box Hill North, Victoria, Australia
| | - James Wickham
- School of Biomedical Science, Charles Sturt University, Orange, New South Wales, Australia
| | - Kiran Shah
- Magellan Stem Cells, Box Hill North, Victoria, Australia
| | - Abi Tenen
- Melbourne Stem Cell Centre, Box Hill North, Victoria, Australia.,Magellan Stem Cells, Box Hill North, Victoria, Australia.,Monash University School of Primary Health Care, Monash University, Notting Hill, Victoria, Australia.,Vision Eye Institute, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Freitag J, Norsworthy C, Wickham J, Shah K, Tenen A. High tibial osteotomy in combination with arthroscopic abrasion arthroplasty and autologous adipose-derived mesenchymal stem cell therapy in the treatment of advanced knee osteoarthritis. BMJ Case Rep 2019; 12:12/2/bcr-2018-228003. [PMID: 30733250 PMCID: PMC6381976 DOI: 10.1136/bcr-2018-228003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis is a progressive and debilitating condition. An increasing number of total knee replacements are being performed under the age of 65. Improved understanding of the action of mesenchymal stem cells (MSC) has seen renewed interest in their role in cartilage repair. A 43-year-old man presented with grade IV medial compartment knee osteoarthritis. The patient underwent high tibial osteotomy (HTO) and arthroscopic abrasion arthroplasty in combination with adipose-derived MSC therapy. The patient reported improvement in pain and function as measured by validated outcome scores. Repeat MRI including T2 mapping techniques showed hyaline-like cartilage regeneration. This case highlights the potential benefit of surgical interventions including HTO in combination with MSC therapy in early-onset severe osteoarthritis. This technique may considerably delay or prevent the need for total knee replacement in young patients. Further controlled trials are needed to confirm the reproducibility of this outcome.
Collapse
Affiliation(s)
- Julien Freitag
- Charles Sturt University - Orange Campus, Orange, New South Wales, Australia.,Magellan Stem Cells, Box Hill North, Victoria, Australia.,Melbourne Stem Cell Centre, Box Hill North, Victoria, Australia
| | | | - James Wickham
- Charles Sturt University - Orange Campus, Orange, New South Wales, Australia
| | - Kiran Shah
- Magellan Stem Cells, Box Hill North, Victoria, Australia
| | - Abi Tenen
- Magellan Stem Cells, Box Hill North, Victoria, Australia.,Melbourne Stem Cell Centre, Box Hill North, Victoria, Australia.,Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
New Approaches to Treat Osteoarthritis with Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:5373294. [PMID: 30305819 PMCID: PMC6165608 DOI: 10.1155/2018/5373294] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/21/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis is one of the most common chronic health problems in the world that causes disability and chronic pain with reduced mobility and is a progressive degenerative disease in weight-bearing joints such as the knee. The pathology of the joint resulting from OA includes loss of cartilage volume and cartilage lesions leading to inflammation of the articular joint structures; its incidence and progression are associated with a variety of risk factors. Most of the current treatments focus on symptom management such as physical and occupational therapies, pharmacological intervention for pain management, and surgical intervention with limited success and do not address nor halt the progression of the disease. In this review, we will describe the current treatment options for OA and the exciting new translational medical research currently underway utilising mesenchymal stem cells for OA therapy.
Collapse
|
18
|
Damia E, Chicharro D, Lopez S, Cuervo B, Rubio M, Sopena JJ, Vilar JM, Carrillo JM. Adipose-Derived Mesenchymal Stem Cells: Are They a Good Therapeutic Strategy for Osteoarthritis? Int J Mol Sci 2018; 19:ijms19071926. [PMID: 29966351 PMCID: PMC6073660 DOI: 10.3390/ijms19071926] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a major cause of disability in elderly population around the world. More than one-third of people over 65 years old shows either clinical or radiological evidence of OA. There is no effective treatment for this degenerative disease, due to the limited capacity for spontaneous cartilage regeneration. Regarding the use of regenerative therapies, it has been reported that one option to restore degenerated cartilage are adipose-derived mesenchymal stem cells (ASCs). The purpose of this review is to describe and compare the efficacy of ASCs versus other therapies in OA. Methods: Recent studies have shown that ASCs exert paracrine effects protecting against degenerative changes in chondrocytes. According to the above, we have carried out a review of the literature using a combination of osteoarthritis, stem cells, and regenerative therapies as keywords. Results: Conventional pharmacological therapies for OA treatment are considered before the surgical option, however, they do not stop the progression of the disease. Moreover, total joint replacement is not recommended for patients under 55 years, and high tibia osteotomy (HTO) is a viable solution to address lower limb malalignment with concomitant OA, but some complications have been described. In recent years, the use of mesenchymal stem cells (MSCs) as a treatment strategy for OA is increasing considerably, thanks to their capacity to improve symptoms together with joint functionality and, therefore, the patients’ quality of life. Conclusions: ASC therapy has a positive effect on patients with OA, although there is limited evidence and little long-term follow-up.
Collapse
Affiliation(s)
- Elena Damia
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| | - Sergio Lopez
- Department of Animal Pathology. Instituto Universitario de Investigaciones Biomédicas y Sanitarias. University of Las Palmas de Gran Canaria, 35416 Las Palmas de Gran Canaria, Spain.
| | - Belen Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| | - Monica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| | - Joaquin J Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| | - Jose Manuel Vilar
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
- Department of Animal Pathology. Instituto Universitario de Investigaciones Biomédicas y Sanitarias. University of Las Palmas de Gran Canaria, 35416 Las Palmas de Gran Canaria, Spain.
| | - Jose Maria Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| |
Collapse
|