1
|
Li J, Hu YQ, Cheng HB, Wang T, Kuang LH, Huang T, Yan XH. RDH12-associated retinal degeneration caused by a homozygous pathogenic variant of 146C>T and literature review. Int J Ophthalmol 2024; 17:311-316. [PMID: 38371258 PMCID: PMC10827614 DOI: 10.18240/ijo.2024.02.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024] Open
Abstract
AIM To describe the clinical, electrophysiological, and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant. METHODS The patient underwent a complete ophthalmologic examination including best-corrected visual acuity, anterior segment and dilated fundus, visual field, spectral-domain optical coherence tomography (OCT) and electroretinogram (ERG). The retinal disease panel genes were sequenced through chip capture high-throughput sequencing and Sanger sequencing was used to confirm the result. Then we reviewed the characteristics of the patients reported with the same variant. RESULTS A 30-year male presented with severe early retinal degeneration who complained night blindness, decreased visual acuity, vitreous floaters and amaurosis fugax. The best corrected vision was 0.04 OD and 0.12 OS, respectively. The fundus photo and OCT showed bilateral macular atrophy but larger areas of macular atrophy in the left eye. Autofluorescence shows bilateral symmetrical hypo-autofluorescence. ERG revealed that the amplitudes of a- and b-wave were severely decreased. Multifocal ERG showed decreased amplitudes in the local macular area. A homozygous missense variant c.146C>T (chr14:68191267) was found. The clinical characteristics of a total of 13 patients reported with the same pathologic variant varied. CONCLUSION An unusual patient with a homozygous pathogenic variant in the c.146C>T of RDH12 which causes late-onset and asymmetric retinal degeneration are reported. The clinical manifestations of the patient with multimodal retinal imaging and functional examinations have enriched our understanding of this disease.
Collapse
Affiliation(s)
- Jin Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Yi-Qun Hu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Hong-Bo Cheng
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Ting Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Long-Hao Kuang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Tao Huang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Xiao-He Yan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| |
Collapse
|
2
|
Bianco L, Arrigo A, Antropoli A, Saladino A, Aragona E, Bandello F, Parodi MB. Non-vasogenic cystoid maculopathy in autosomal recessive bestrophinopathy: novel insights from NIR-FAF and OCTA imaging. Ophthalmic Genet 2024; 45:44-50. [PMID: 37041716 DOI: 10.1080/13816810.2023.2191711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/11/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Autosomal Recessive Bestrophinopathy (ARB) is an inherited retinal disease caused by biallelic mutations in the BEST1 gene. Herein, we report the multimodal imaging findings of ARB presenting with cystoid maculopathy and investigate the short-term response to combined systemic and topical carbonic anhydrase inhibitors (CAIs). MATERIAL AND METHODS An observational, prospective, case series on two siblings affected by ARB is presented. Patients underwent genetic testing and optical coherence tomography (OCT), blue-light fundus autofluorescence (BL-FAF), near-infrared fundus autofluorescence (NIR-FAF), fluorescein angiography (FA), MultiColor imaging, and OCT angiography (OCTA). RESULTS Two male siblings, aged 22 and 16, affected by ARB resulting from c.598C>T, p.(Arg200*) and c.728C>A, p.(Ala243Glu) BEST1 compound heterozygous variants, presented with bilateral multifocal yellowish pigment deposits scattered through the posterior pole that corresponded to hyperautofluorescent deposits on BL-FAF. Vice versa, NIR-FAF mainly disclosed wide hypoautofluorescent areas in the macula. A cystoid maculopathy and shallow subretinal fluid were evident on structural OCT, albeit without evidence of dye leakage or pooling on FA. OCTA demonstrated disruption of the choriocapillaris throughout the posterior pole and sparing of intraretinal capillary plexuses. Six months of combined therapy with oral acetazolamide and topical brinzolamide resulted in limited clinical benefit. CONCLUSIONS We reported two siblings affected by ARB, presenting as non-vasogenic cystoid maculopathy. Prominent alteration of NIR-FAF signal and concomitant choriocapillaris rarefaction on OCTA were noted in the macula. The limited short-term response to combined systemic and topical CAIs might be explained by the impairment of the RPE-CC complex.
Collapse
Affiliation(s)
- Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
3
|
Liu W, Chen J, Li T, Sun X. Conducting gene therapy clinical trials based on natural history studies for inherited retinal diseases in Chinese population. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:6-8. [PMID: 37846429 PMCID: PMC10577821 DOI: 10.1016/j.aopr.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 10/18/2023]
Affiliation(s)
- Wenjia Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Tong Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
4
|
Wang J, Wang Y, Li S, Xiao X, Yi Z, Jiang Y, Li X, Jia X, Wang P, Jin C, Sun W, Zhang Q. Clinical and Genetic Analysis of RDH12-Associated Retinopathy in 27 Chinese Families: A Hypomorphic Allele Leads to Cone-Rod Dystrophy. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35994252 PMCID: PMC9419460 DOI: 10.1167/iovs.63.9.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to elucidate the genetic basis of 2 distinct phenotypes associated with biallelic variants in RDH12. Methods Patients with biallelic variants in RDH12 were recruited from our genetic eye clinic. Ocular phenotypes were evaluated. Genotype-phenotype correlations were further clarified using in-house and existing databases. Results In total, 22 biallelic RDH12 variants, including 5 novel variants, were identified in 29 patients from 27 families. Two distinct phenotypes were observed: early-onset and generalized retinal dystrophy with severe impairment of rods and cones in 24 patients (82.8%, 24/29), and late-onset cone-rod dystrophy (CORD) with central macular atrophy in 5 patients from 5 unrelated families (17.2%, 5/29), in which a hypomorphic allele (c.806C>G/p.Ala269Gly) was shared by all 5 patients. During follow-up, patients with late-onset CORD were relatively stable and did not progress to the severe form, which was considered to be an independent manifestation of RDH12-associated retinopathy caused by specific genotypes. Conclusions The hypomorphic allele is responsible for the unique late-onset CORD in 5 families with recessive RDH12-associated retinopathy, in contrast to the well-known severe and generalized retinopathy. Determining the therapeutic value of interventions may depend on understanding the molecular mechanisms underlying manifestation of this hypomorphic variant only in the central macular region, with relative preservation of the peripheral retina.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
5
|
Daich Varela M, Cabral de Guimaraes TA, Georgiou M, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: current management and clinical trials. Br J Ophthalmol 2022; 106:445-451. [PMID: 33712480 PMCID: PMC8961750 DOI: 10.1136/bjophthalmol-2020-318483] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 12/26/2022]
Abstract
Leber congenital amaurosis (LCA) is a severe congenital/early-onset retinal dystrophy. Given its monogenic nature and the immunological and anatomical privileges of the eye, LCA has been particularly targeted by cutting-edge research. In this review, we describe the current management of LCA, and highlight the clinical trials that are on-going and planned. RPE65-related LCA pivotal trials, which culminated in the first Food and Drug Administration-approved and European Medicines Agency-approved ocular gene therapy, have paved the way for a new era of genetic treatments in ophthalmology. At present, multiple clinical trials are available worldwide applying different techniques, aiming to achieve better outcomes and include more genes and variants. Genetic therapy is not only implementing gene supplementation by the use of adeno-associated viral vectors, but also clustered regularly interspaced short palindromic repeats (CRISPR)-mediated gene editing and post-transcriptional regulation through antisense oligonucleotides. Pharmacological approaches intending to decrease photoreceptor degeneration by supplementing 11-cis-retinal and cell therapy's aim to replace the retinal pigment epithelium, providing a trophic and metabolic retinal structure, are also under investigation. Furthermore, optoelectric devices and optogenetics are also an option for patients with residual visual pathway. After more than 10 years since the first patient with LCA received gene therapy, we also discuss future challenges, such as the overlap between different techniques and the long-term durability of efficacy. The next 5 years are likely to be key to whether genetic therapies will achieve their full promise, and whether stem cell/cellular therapies will break through into clinical trial evaluation.
Collapse
Affiliation(s)
- Malena Daich Varela
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | | | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| |
Collapse
|
6
|
Sajovic J, Meglič A, Glavač D, Markelj Š, Hawlina M, Fakin A. The Role of Vitamin A in Retinal Diseases. Int J Mol Sci 2022; 23:1014. [PMID: 35162940 PMCID: PMC8835581 DOI: 10.3390/ijms23031014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin A is an essential fat-soluble vitamin that occurs in various chemical forms. It is essential for several physiological processes. Either hyper- or hypovitaminosis can be harmful. One of the most important vitamin A functions is its involvement in visual phototransduction, where it serves as the crucial part of photopigment, the first molecule in the process of transforming photons of light into electrical signals. In this process, large quantities of vitamin A in the form of 11-cis-retinal are being isomerized to all-trans-retinal and then quickly recycled back to 11-cis-retinal. Complex machinery of transporters and enzymes is involved in this process (i.e., the visual cycle). Any fault in the machinery may not only reduce the efficiency of visual detection but also cause the accumulation of toxic chemicals in the retina. This review provides a comprehensive overview of diseases that are directly or indirectly connected with vitamin A pathways in the retina. It includes the pathophysiological background and clinical presentation of each disease and summarizes the already existing therapeutic and prospective interventions.
Collapse
Affiliation(s)
- Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Špela Markelj
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
CRB1-Related Retinal Dystrophies in a Cohort of 50 Patients: A Reappraisal in the Light of Specific Müller Cell and Photoreceptor CRB1 Isoforms. Int J Mol Sci 2021; 22:ijms222312642. [PMID: 34884448 PMCID: PMC8657784 DOI: 10.3390/ijms222312642] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/29/2023] Open
Abstract
Pathogenic variants in CRB1 lead to diverse recessive retinal disorders from severe Leber congenital amaurosis to isolated macular dystrophy. Until recently, no clear phenotype-genotype correlation and no appropriate mouse models existed. Herein, we reappraise the phenotype-genotype correlation of 50 patients with regards to the recently identified CRB1 isoforms: a canonical long isoform A localized in Müller cells (12 exons) and a short isoform B predominant in photoreceptors (7 exons). Twenty-eight patients with early onset retinal dystrophy (EORD) consistently had a severe Müller impairment, with variable impact on the photoreceptors, regardless of isoform B expression. Among them, two patients expressing wild type isoform B carried one variant in exon 12, which specifically damaged intracellular protein interactions in Müller cells. Thirteen retinitis pigmentosa patients had mainly missense variants in laminin G-like domains and expressed at least 50% of isoform A. Eight patients with the c.498_506del variant had macular dystrophy. In one family homozygous for the c.1562C>T variant, the brother had EORD and the sister macular dystrophy. In contrast with the mouse model, these data highlight the key role of Müller cells in the severity of CRB1-related dystrophies in humans, which should be taken into consideration for future clinical trials.
Collapse
|
8
|
Bian J, Chen H, Sun J, Cao Y, An J, Pan Q, Qi M. Gene Therapy for Rdh12-Associated Retinal Diseases Helps to Delay Retinal Degeneration and Vision Loss. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3581-3591. [PMID: 34429587 PMCID: PMC8380142 DOI: 10.2147/dddt.s305378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Purpose The aim of study was to establish Rdh12-associated inherited retinal disease (Rdh12-IRD) mouse model and to identify the best timepoint for gene therapy. Methods We induced retinal degeneration in Rdh12-/- mice using a bright light. We clarified the establishment of Rdh12-IRD mouse model by analyzing the thickness of retinal layers and electroretinography (ERG). Rdh12-IRD mice received a subretinal injection of adeno-associated virus 2/8-packaged Rdh12 cDNA for treatment. We evaluated the visual function and retinal structure in the treated and untreated eyes to identify the best timepoint for gene therapy. Results Rdh12-IRD mice showed significant differences in ERG amplitudes and photoreceptor survival compared to Rdh12+/+ mice. Preventive gene therapy not only maintained normal visual function but also prevented photoreceptor loss. Salvage gene therapy could not reverse the retinal degeneration phenotype of Rdh12-IRD mice, but it could slow down the loss of visual function. Conclusion The light-induced retinal degeneration in our Rdh12-/- mice indicated that a defect in Rdh12 alone was sufficient to cause visual dysfunction and photoreceptor degeneration, which reproduced the phenotypes observed in RDH12-IRD patients. This model is suitable for gene therapy studies. Early treatment of the primary Rdh12 defect helps to delay the later onset of photoreceptor degeneration and maintains visual function in Rdh12-IRD mice.
Collapse
Affiliation(s)
- Jiaxin Bian
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, 310000, People's Republic of China.,Center for Precision Medicine, Zhejiang-California International NanoSystems Institute, Hangzhou, 310000, People's Republic of China
| | - Hongyu Chen
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, 310000, People's Republic of China.,Center for Precision Medicine, Zhejiang-California International NanoSystems Institute, Hangzhou, 310000, People's Republic of China
| | - Junhui Sun
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, 310000, People's Republic of China.,Center for Precision Medicine, Zhejiang-California International NanoSystems Institute, Hangzhou, 310000, People's Republic of China
| | - Yuqing Cao
- School of Optometry and Ophthalmology Wenzhou Medical College, Wenzhou, People's Republic of China
| | - Jianhong An
- School of Optometry and Ophthalmology Wenzhou Medical College, Wenzhou, People's Republic of China
| | - Qing Pan
- Department of Ophthalmology, Zhejiang University Medical School First Affiliated Hospital, Hangzhou, 310000, People's Republic of China
| | - Ming Qi
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, 310000, People's Republic of China.,Center for Precision Medicine, Zhejiang-California International NanoSystems Institute, Hangzhou, 310000, People's Republic of China.,Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Department of Laboratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310000, People's Republic of China.,DIAN Diagnostics, Hangzhou, 310000, People's Republic of China.,Department of Pathology and Laboratory of Medicine, University of Rochester Medical Centre, Rochester, NY, 14609, USA.,HVP-China, Hangzhou, 310000, People's Republic of China
| |
Collapse
|
9
|
Sarkar H, Toms M, Moosajee M. Involvement of Oxidative and Endoplasmic Reticulum Stress in RDH12-Related Retinopathies. Int J Mol Sci 2021; 22:ijms22168863. [PMID: 34445569 PMCID: PMC8396253 DOI: 10.3390/ijms22168863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/16/2022] Open
Abstract
Retinol dehydrogenase 12 (RDH12) is expressed in photoreceptor inner segments and catalyses the reduction of all-trans retinal (atRAL) to all-trans retinol (atROL), as part of the visual cycle. Mutations in RDH12 are primarily associated with autosomal recessive Leber congenital amaurosis. To further our understanding of the disease mechanisms, HEK-293 cell lines expressing wildtype (WT) and mutant RDH12 were created. The WT cells afforded protection from atRAL-induced toxicity and oxidative stress. Mutant RDH12 cells displayed reduced protein expression and activity, with an inability to protect cells from atRAL toxicity, inducing oxidative and endoplasmic reticulum (ER) stress, with upregulation of sXBP1, CHOP, and ATF4. Pregabalin, a retinal scavenger, attenuated atRAL-induced ER stress in the mutant RDH12 cell lines. A zebrafish rdh12 mutant model (rdh12u533 c.17_23del; p.(Val6AlafsTer5)) was generated through CRISPR-Cas9 gene editing. Mutant fish showed disrupted phagocytosis through transmission electron microscopy, with increased phagosome size at 12 months post-fertilisation. Rhodopsin mislocalisation and reduced expression of atg12 and sod2 indicated early signs of a rod-predominant degeneration. A lack of functional RDH12 results in ER and oxidative stress representing key pathways to be targeted for potential therapeutics.
Collapse
Affiliation(s)
- Hajrah Sarkar
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (H.S.); (M.T.)
- The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Toms
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (H.S.); (M.T.)
- The Francis Crick Institute, London NW1 1AT, UK
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (H.S.); (M.T.)
- The Francis Crick Institute, London NW1 1AT, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence:
| |
Collapse
|
10
|
Sarkar H, Méjécase C, Harding P, Eintracht J, Toualbi L, Cunha DL, Moosajee M. Generation of two human iPSC lines from patients with autosomal dominant retinitis pigmentosa (UCLi014-A) and autosomal recessive Leber congenital amaurosis (UCLi015-A), associated with RDH12 variants. Stem Cell Res 2021; 54:102449. [PMID: 34216980 PMCID: PMC8363920 DOI: 10.1016/j.scr.2021.102449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) lines were generated from two patients with RDH12 variants. UCLi014-A is from a patient with heterozygous frameshift mutation c.759del p.(Phe254Leufs*24), associated with autosomal dominant retinitis pigmentosa. UCLi015-A is from a patient with homozygous missense mutation c.619A > G p.(Asn207Asp), associated with Leber congenital amaurosis. Fibroblasts were derived from skin biopsies and reprogrammed using integration free episomal reprogramming plasmids. The iPSC lines expressed pluripotency markers, exhibited differentiation potential in vitro and displayed normal karyotypes. These cell lines will act as a tool for disease modelling, enabling comparison of disease mechanisms, identification of therapeutic targets and drug screening.
Collapse
Affiliation(s)
- Hajrah Sarkar
- UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | - Cécile Méjécase
- UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | | | | | - Lyes Toualbi
- UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.
| |
Collapse
|
11
|
Muthiah MN, Kalitzeos A, Oprych K, Singh N, Georgiou M, Wright GA, Robson AG, Arno G, Khan K, Michaelides M. Novel disease-causing variant in RDH12 presenting with autosomal dominant retinitis pigmentosa. Br J Ophthalmol 2021; 106:1274-1281. [PMID: 34031043 PMCID: PMC9411907 DOI: 10.1136/bjophthalmol-2020-318034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/06/2021] [Accepted: 03/23/2021] [Indexed: 12/02/2022]
Abstract
Aim To describe the clinical and molecular features of a novel, autosomal dominant RDH12-retinopathy. Methods Retrospective cross-sectional study. Twelve individuals from a four-generation British pedigree underwent ophthalmic examination, genotyping using next generation sequencing, including whole genome sequencing and multimodal retinal imaging including fundus photography, optical coherence tomography (OCT), autofluorescence imaging and adaptive optics (AO) scanning light ophthalmoscopy were performed. Visual electrophysiology was performed in a subset. Results Eight family members were confirmed as affected by genotyping heterozygous for RDH12 c.763delG. Visual acuity ranged from −0.1 to 0.2 logMAR. Affected individuals had constricted visual fields. A parafoveal and peripapillary ring of hyper-autofluorescence was seen initially, and with progression the area of perifoveal hypo-autofluorescence increased to involve the parafoveal area. Mild retinal thinning was identified on OCT imaging with reduction in both foveal total retinal and outer nuclear layer thickness. Cone densities along the temporal meridian were reduced in affected individuals compared with normative values at all temporal eccentricities studied. One individual with incomplete penetrance, was identified as clinically affected primarily on the basis of AO imaging. Full-field electroretinography demonstrated a rod-cone pattern of dysfunction and large-field pattern electroretinography identified peripheral macular dysfunction. Conclusions This novel heterozygous variant RDH12 c.763delG is associated with a rod-cone dystrophy with variable expression. Determination of the degree of penetrance may depend on the modality employed to phenotypically characterise an individual. This rare and specific heterozygous (dominant) variant is predicted to result in a gain of function, that causes disease in a gene typically associated with biallelic (recessive) variants.
Collapse
Affiliation(s)
- Manickam Nick Muthiah
- Cell and Gene Therapy, University College London Institute of Ophthalmology, London, UK .,Vitreoretinal Research, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Angelos Kalitzeos
- Cell and Gene Therapy, University College London Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Kate Oprych
- Great Ormond Street Hospital For Children NHS Trust, London, UK
| | - Navjit Singh
- Cell and Gene Therapy, University College London Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Michalis Georgiou
- Cell and Gene Therapy, University College London Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Genevieve Ann Wright
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, Greater London, UK
| | - Anthony G Robson
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, Greater London, UK.,Electrophysiology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Gavin Arno
- Cell and Gene Therapy, University College London Institute of Ophthalmology, London, UK.,Great Ormond Street Hospital For Children NHS Trust, London, UK
| | - Kamron Khan
- Department of Ophthalmology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Department of Ophthalmology, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, West Yorkshire, UK
| | - Michel Michaelides
- Cell and Gene Therapy, University College London Institute of Ophthalmology, London, UK .,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Abstract
Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population. The advances in ocular genetics, retinal imaging and molecular biology, have conspired to create the ideal environment for establishing treatments for IRD, with the first approved gene therapy and the commencement of multiple therapy trials. The scope of this review is to familiarize clinicians and scientists with the current landscape of retinal imaging in IRD. Herein we present in a comprehensive and concise manner the imaging findings of: (I) macular dystrophies (MD) [Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), pattern dystrophy (PRPH2), Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)], (II) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4 and RPGR), (III) cone dysfunction syndromes [achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6], blue-cone monochromatism (OPN1LW/OPN1MW array), oligocone trichromacy, bradyopsia (RGS9/R9AP) and Bornholm eye disease (OPN1LW/OPN1MW), (IV) Leber congenital amaurosis (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (V) rod-cone dystrophies [retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)], (VI) rod dysfunction syndromes (congenital stationary night blindness, fundus albipunctatus (RDH5), Oguchi disease (SAG, GRK1), and (VII) chorioretinal dystrophies [choroideremia (CHM), gyrate atrophy (OAT)].
Collapse
Affiliation(s)
- Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Kaoru Fujinami
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Sofia F, Cerolini S, Durham T. Report from a Workshop on Accelerating the Development of Treatments for Inherited Retinal Dystrophies Associated with Mutations in the RDH12 Gene. Transl Vis Sci Technol 2020; 9:30. [PMID: 32855876 PMCID: PMC7422783 DOI: 10.1167/tvst.9.8.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 11/24/2022] Open
Abstract
The Foundation Fighting Blindness, RDH12 family organizations, and the RDH12 Fund for Sight convened a jointly organized workshop in Columbia, Maryland, on November 19, 2019. The purpose of the workshop was to share perspectives on what is known about the RDH12-associated retinal dystrophies (RDs) and discuss the advancement of therapies, primarily gene therapy, for people with mutations in the RDH12 gene which cause Leber congenital amaurosis 13 (LCA13). The workshop began with presentations on the RDH12 landscape, patient perspectives, the use of statistical modeling for clinical trial design, and the Foundation's My Retina Tracker Registry. An afternoon roundtable discussion focused on four key areas essential to advance research toward gene therapy clinical trials: trial design, dose projection from nonclinical to clinical studies, natural history, and regulatory considerations. In their comments, the 27 participants from academic centers, affected families, biotechnology and pharmaceutical companies, and the regulatory community highlighted a number of research priorities, including the following: systematic inventory of retrospective natural history studies and planning for a multicenter prospective study, development of large animal models, and evaluation of novel tests of functional vision in young children. Despite these research opportunities, the workshop participants agreed that the field could be ready now for a clinical trial aimed initially at testing the safety and, possibly, efficacy of RDH12 gene therapy. Advancements in this field are being fostered by the emergence of an innovative multi-stakeholder research endeavor that relies on the effective engagement of the patients. Translational Relevance This initiative serves as a model for how affected individuals and their families can be research partners on the path to treatments and cures.
Collapse
Affiliation(s)
| | | | - Todd Durham
- Foundation Fighting Blindness, Columbia, MD, USA
| |
Collapse
|
14
|
Ba-Abbad R, Arno G, Robson AG, Bouras K, Georgiou M, Wright G, Webster AR, Michaelides M. Macula-predominant retinopathy associated with biallelic variants in RDH12. Ophthalmic Genet 2020; 41:612-615. [PMID: 32790509 DOI: 10.1080/13816810.2020.1802763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To describe the clinical, electrophysiological, and molecular features of an unusual macula-predominant retinopathy in two unrelated probands with biallelic variants in RDH12. METHODS Retrospective case series. RESULTS A 29-year-old female presented with visual loss since the age of 14 years. Retinal examination revealed symmetric outer retinal atrophy in the posterior pole with peripapillary sparing. Fundus autofluorescence (AF) showed patchy loss of AF in the posterior pole, with hyper-autofluorescent borders. Optical coherence tomography (OCT) showed loss of the macular outer retinal layers. Pattern electroretinography (PERG) showed macular dysfunction and full-field ERG indicated mild loss of photoreceptor function. Next-generation sequencing (NGS) identified two variants in RDH12: p.(Arg234His) and c.448 + 1 G > A in trans. The second patient was a 10-year-old male with bilateral macular changes and visual loss. Retinal examination showed bilateral macular cloverleaf-like outer retinal changes, with relative foveal sparing. Fundus AF showed bilateral macular hypo-autofluorescent patches with a border of increased signal and preserved foveal AF. OCT showed attenuation of the perifoveal outer retinal layers in the regions of reduced AF signal. PERG showed macular dysfunction, but the full-field ERG was normal. NGS and whole-genome sequencing identified two variants in RDH12: p.(Arg234His) and p.(Cys245_Leu247deI) in trans. CONCLUSIONS Disease-causing variants in RDH12 are typically associated with early-onset severe retinal dystrophy with significant macular involvement. Hypomorphic alleles of this gene cause relatively mild retinopathy with predominant macular involvement. This phenotype demonstrates the vulnerability of the macular photoreceptors to certain perturbations of RDH12.
Collapse
Affiliation(s)
- Rola Ba-Abbad
- UCL Institute of Ophthalmology, University College London , London, UK.,Genetics Department, Moorfields Eye Hospital , London, UK.,Vitreoretinal Division, King Khaled Eye Specialist Hospital , Riyadh, Saudi Arabia
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London , London, UK.,Genetics Department, Moorfields Eye Hospital , London, UK
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London , London, UK.,Genetics Department, Moorfields Eye Hospital , London, UK
| | | | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London , London, UK.,Genetics Department, Moorfields Eye Hospital , London, UK
| | - Genevieve Wright
- UCL Institute of Ophthalmology, University College London , London, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London , London, UK.,Genetics Department, Moorfields Eye Hospital , London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London , London, UK.,Genetics Department, Moorfields Eye Hospital , London, UK
| |
Collapse
|
15
|
Sarkar H, Dubis AM, Downes S, Moosajee M. Novel Heterozygous Deletion in Retinol Dehydrogenase 12 ( RDH12) Causes Familial Autosomal Dominant Retinitis Pigmentosa. Front Genet 2020; 11:335. [PMID: 32322264 PMCID: PMC7156618 DOI: 10.3389/fgene.2020.00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/20/2020] [Indexed: 01/22/2023] Open
Abstract
Mutations in the retinol dehydrogenase 12 (RDH12) gene are primarily associated with Leber congenital amaurosis (LCA) type 13, a severe early onset autosomal recessive retinal dystrophy. Only one family with a heterozygous variant, associated with mild retinitis pigmentosa (RP), has been reported. We report a novel heterozygous variant [(c.759del; p.(Phe254Leufs∗24)], resulting in a frameshift and premature termination identified in two unrelated individuals with familial autosomal dominant RP. Both heterozygous variants are associated with a late onset RP phenotype, suggesting a possible genotype-phenotype correlation.
Collapse
Affiliation(s)
- Hajrah Sarkar
- Development, Ageing and Disease Theme, UCL Institute of Ophthalmology, London, United Kingdom
| | - Adam M Dubis
- Development, Ageing and Disease Theme, UCL Institute of Ophthalmology, London, United Kingdom.,Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Susan Downes
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Mariya Moosajee
- Development, Ageing and Disease Theme, UCL Institute of Ophthalmology, London, United Kingdom.,Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.,Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
16
|
Scott HA, Place EM, Ferenchak K, Zampaglione E, Wagner NE, Chao KR, DiTroia SP, Navarro-Gomez D, Mukai S, Huckfeldt RM, Pierce EA, Bujakowska KM. Expanding the phenotypic spectrum in RDH12-associated retinal disease. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004754. [PMID: 32014858 PMCID: PMC6996522 DOI: 10.1101/mcs.a004754] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022] Open
Abstract
Retinol dehydrogenase 12, RDH12, plays a pivotal role in the visual cycle to ensure the maintenance of normal vision. Alterations in activity of this protein result in photoreceptor death and decreased vision beginning at an early age and progressing to substantial vision loss later in life. Here we describe 11 patients with retinal degeneration that underwent next-generation sequencing (NGS) with a targeted panel of all currently known inherited retinal degeneration (IRD) genes and whole-exome sequencing to identify the genetic causality of their retinal disease. These patients display a range of phenotypic severity prompting clinical diagnoses of macular dystrophy, cone-rod dystrophy, retinitis pigmentosa, and early-onset severe retinal dystrophy all attributed to biallelic recessive mutations in RDH12. We report 15 causal alleles and expand the repertoire of known RDH12 mutations with four novel variants: c.215A > G (p.Asp72Gly); c.362T > C (p.Ile121Thr); c.440A > C (p.Asn147Thr); and c.697G > A (p.Val233Ille). The broad phenotypic spectrum observed with biallelic RDH12 mutations has been observed in other genetic forms of IRDs, but the diversity is particularly notable here given the prior association of RDH12 primarily with severe early-onset disease. This breadth emphasizes the importance of broad genetic testing for inherited retinal disorders and extends the pool of individuals who may benefit from imminent gene-targeted therapies.
Collapse
Affiliation(s)
- Hilary A Scott
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Emily M Place
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Kevin Ferenchak
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Erin Zampaglione
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Naomi E Wagner
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Katherine R Chao
- Center for Mendelian Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Stephanie P DiTroia
- Center for Mendelian Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Daniel Navarro-Gomez
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Shizuo Mukai
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Rachel M Huckfeldt
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
17
|
Sarkar H, Moosajee M. Retinol dehydrogenase 12 (RDH12): Role in vision, retinal disease and future perspectives. Exp Eye Res 2019; 188:107793. [PMID: 31505163 DOI: 10.1016/j.exer.2019.107793] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/05/2023]
Abstract
Retinol dehydrogenase 12 (RDH12) is an NADPH-dependent retinal reductase, which is expressed in the inner segments of the photoreceptors. It functions as part of the visual cycle, which is a series of enzymatic reactions required for the regeneration of the visual pigment, and has also been implicated in detoxification of lipid peroxidation products. Mutations in RDH12 have been linked to Leber congenital amaurosis (LCA) and autosomal dominant retinitis pigmentosa. A number of in-vitro studies have shown that mutations in RDH12 result in little or no enzyme activity. Knockout mouse models however do not recapitulate the severe phenotype observed in patients, resulting in a limited understanding of the disease mechanisms. With gene replacement and small molecule drugs emerging for inherited retinal dystrophies, herein we provide a review of RDH12 structure, its role in vision and the current understanding of disease mechanisms linked to clinical phenotype to support therapeutic development.
Collapse
Affiliation(s)
- Hajrah Sarkar
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK; Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.
| |
Collapse
|
18
|
Feathers KL, Jia L, Perera ND, Chen A, Presswalla FK, Khan NW, Fahim AT, Smith AJ, Ali RR, Thompson DA. Development of a Gene Therapy Vector for RDH12-Associated Retinal Dystrophy. Hum Gene Ther 2019; 30:1325-1335. [PMID: 31237438 DOI: 10.1089/hum.2019.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Early-onset severe retinal dystrophy (EOSRD) is a genetically heterogeneous group of diseases resulting in serious visual disability in children. A significant number of EOSRD cases, often diagnosed as Leber congenital amaurosis (LCA13), are associated with mutations in the gene encoding retinol dehydrogenase 12 (RDH12). RDH12 is a member of the enzyme family of short-chain dehydrogenases/reductases. In the retina, RDH12 plays a critical role in reducing toxic retinaldehydes generated by visual cycle activity that is required for the light response of the photoreceptor cells. Individuals with RDH12 deficiency exhibit widespread retinal degeneration impacting both rods and cones. Although Rdh12-deficient (Rdh12-/-) mice do not exhibit retinal degeneration, functional deficits relevant to visual cycle function can be demonstrated. In the present study, we describe the development and preclinical testing of a recombinant adeno-associated viral (rAAV) vector that has the potential for use in treating EOSRD due to RDH12 mutations. Wild-type and Rdh12-/- mice that received a subretinal injection of rAAV2/5 carrying a human RDH12 cDNA driven by a human rhodopsin-kinase promoter exhibited transgene expression that was stable, correctly localized, and did not cause retinal toxicity. In addition, administration of the vector reconstituted retinal reductase activity in the retinas of Rdh12-/- mice and decreased susceptibility to light damage associated with Rdh12 deficiency, thus demonstrating potential therapeutic efficacy in an animal model that does not exhibit a retinal degeneration phenotype. These findings support further efforts to develop gene replacement therapy for individuals with RDH12 mutations.
Collapse
Affiliation(s)
- Kecia L Feathers
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lin Jia
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nirosha Dayanthi Perera
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Adrienne Chen
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Feriel K Presswalla
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexander J Smith
- Department of Genetics, University College London Institute of Ophthalmology, London, United Kingdom
| | - Robin R Ali
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Genetics, University College London Institute of Ophthalmology, London, United Kingdom
| | - Debra A Thompson
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|