1
|
Feller CN, Goldenberg M, Asselin PD, Merchant-Borna K, Abar B, Jones CMC, Mannix R, Kawata K, Bazarian JJ. Classification of Comprehensive Neuro-Ophthalmologic Measures of Postacute Concussion. JAMA Netw Open 2021; 4:e210599. [PMID: 33656530 PMCID: PMC7930925 DOI: 10.1001/jamanetworkopen.2021.0599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Symptom-based methods of concussion diagnosis in contact sports result in underdiagnosis and repeated head injury exposure, increasing the risk of long-term disability. Measures of neuro-ophthalmologic (NO) function have the potential to serve as objective aids, but their diagnostic utility is unknown. OBJECTIVE To identify NO measures that accurately differentiate athletes with and without concussion. DESIGN, SETTING, AND PARTICIPANTS This cohort study was conducted among athletes with and without concussion who were aged 17 to 22 years between 2016 and 2017. Eye movements and cognitive function were measured a median of 19 days after injury among patients who had an injury meeting the study definition of concussion while playing a sport (retrospectively selected from a concussion clinic), then compared with a control group of participants without concussion (enrolled from 104 noncontact collegiate athlete volunteers without prior head injury). Data analysis was conducted from November 2019 through May 2020. EXPOSURE Concussion. MAIN OUTCOMES AND MEASURES Classification accuracy of clinically important discriminator eye-tracking (ET) metrics. Participants' eye movements were evaluated with a 12-minute ET procedure, yielding 42 metrics related to smooth pursuit eye movement (SPEM), saccades, dynamic visual acuity, and reaction time. Clinically important discriminator metrics were defined as those with significantly different group differences and area under the receiver operator characteristic curves (AUROCs) of at least 0.70. RESULTS A total of 34 participants with concussions (mean [SD] age, 19.7 [2.4] years; 20 [63%] men) and 54 participants without concussions (mean [SD] age, 20.8 [2.2] years; 31 [57%] men) completed the study. Six ET metrics (ie, simple reaction time, discriminate reaction time, discriminate visual reaction speed, choice visual reaction speed, and reaction time on 2 measures of dynamic visual acuity 2) were found to be clinically important; all were measures of reaction time, and none were related to SPEM. Combined, these 6 metrics had an AUROC of 0.90 (95% CI, 0.80-0.99), a sensitivity of 77.8%, and a specificity of 92.6%. The 6 metrics remained significant on sensitivity testing. CONCLUSIONS AND RELEVANCE In this study, ET measures of slowed visual reaction time had high classification accuracy for concussion. Accurate, objective measures of NO function have the potential to improve concussion recognition and reduce the disability associated with underdiagnosis.
Collapse
Affiliation(s)
- Christina N. Feller
- University of Rochester School of Medicine and Dentistry, Rochester, New York
- Medical College of Wisconsin, Milwaukee
| | | | - Patrick D. Asselin
- University of Rochester School of Medicine and Dentistry, Rochester, New York
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kian Merchant-Borna
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Beau Abar
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Courtney Marie Cora Jones
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Rebekah Mannix
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University, Bloomington
| | - Jeffrey J. Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
2
|
Abstract
Concussion, a peculiar type of mild traumatic brain injury (mTBI), is an injury frequently encountered in various contact and noncontact sports, such as boxing, martial arts, American football, rugby, soccer, ice hockey, horse riding, and alpine skiing. Concussion occurs anytime external forces of specific intensities provoke acceleration-deceleration of the brain, and it is characterized by the rapid onset of short-lived impairment of neurologic functions, spontaneously resolving within weeks, persisting for longer times only in a small percentage of cases. A wide range of molecular alterations, including mitochondrial dysfunction, energy deficit, and gene and protein expression changes, is triggered by concussion and lasts longer than clinical symptoms. In recent years, concussion has become a primary issue of discussion among sports medicine professionals, athletes, media, and sports sponsors in relation to athletes' return to play, after a concussion. Continued improvement in prevention and management of concussed athletes requires extensive research from different disciplines. Research work needs to focus on both prevention and management. Researchers and clinicians' efforts should be dedicated to a better understanding of the molecular changes occurring in the post-concussed brain and to clearly define healing after concussion for a safe return of athletes to play. It is essential for sports medicine professionals to stay informed about the advances in understanding concussions and how to rehabilitate each single player who sustained a concussion.
Collapse
|
3
|
Walter A, Finelli K, Bai X, Johnson B, Neuberger T, Seidenberg P, Bream T, Hallett M, Slobounov S. Neurobiological effect of selective brain cooling after concussive injury. Brain Imaging Behav 2019; 12:891-900. [PMID: 28712093 DOI: 10.1007/s11682-017-9755-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The search for effective treatment facilitating recovery from concussive injury, as well as reducing risk for recurrent concussion is an ongoing challenge. This study aimed to determine: a) feasibility of selective brain cooling to facilitate clinical symptoms resolution, and b) biological functions of the brain within athletes in acute phase of sports-related concussion. Selective brain cooling for 30 minutes using WElkins sideline cooling system was administered to student-athletes suffering concussive injury (n=12; tested within 5±3 days) and those without history of concussion (n=12). fMRI and ASL sequences were obtained before and immediately after cooling to better understanding the mechanism by which cooling affects neurovascular coupling. Concussed subjects self-reported temporary relief from physical symptoms after cooling. There were no differences in the number or strength of functional connections within Default Mode Network (DMN) between groups prior to cooling. However, we observed a reduction in the strength and number of connections of the DMN with other ROIs in both groups after cooling. Unexpectedly, we observed a significant increase in cerebral blood flow (CBF) assessed by ASL after selective cooling in the concussed subjects compared to the normal controls. We suggest that compromised neurovascular coupling in acute phase of injury may be temporarily restored by cooling to match CBF with surges in the metabolic demands of the brain. Upon further validation, selective brain cooling could be a potential clinical tool in the minimization of symptoms and pathological changes after concussion.
Collapse
Affiliation(s)
- Alexa Walter
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA.
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA.
| | - Katie Finelli
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
| | - Xiaoxiao Bai
- Social, Life, and Engineering Sciences Imaging Center, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- 120G Chandlee Lab University Park, University Park, PA, 16802, USA
| | - Brian Johnson
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
| | - Thomas Neuberger
- Social, Life, and Engineering Sciences Imaging Center, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- 113 Chandlee Lab University Park, University Park, PA, 16802, USA
| | - Peter Seidenberg
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Penn State University Intercollegiate Athletics, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- , 1850 E. Park Avenue, Suite 112, State College, PA, 16803, USA
| | - Timothy Bream
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Penn State University Intercollegiate Athletics, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Lasch Building University Park, University Park, PA, 16802, USA
| | - Mark Hallett
- NIH, NINDS, Medical Neurology Branch Building 10 Room 7D37 10 Center Drive MSC 1428, Bethesda, MD, 20892, USA
| | - Semyon Slobounov
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
| |
Collapse
|
4
|
Kenzie ES, Parks EL, Bigler ED, Lim MM, Chesnutt JC, Wakeland W. Concussion As a Multi-Scale Complex System: An Interdisciplinary Synthesis of Current Knowledge. Front Neurol 2017; 8:513. [PMID: 29033888 PMCID: PMC5626937 DOI: 10.3389/fneur.2017.00513] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) has been called "the most complicated disease of the most complex organ of the body" and is an increasingly high-profile public health issue. Many patients report long-term impairments following even "mild" injuries, but reliable criteria for diagnosis and prognosis are lacking. Every clinical trial for TBI treatment to date has failed to demonstrate reliable and safe improvement in outcomes, and the existing body of literature is insufficient to support the creation of a new classification system. Concussion, or mild TBI, is a highly heterogeneous phenomenon, and numerous factors interact dynamically to influence an individual's recovery trajectory. Many of the obstacles faced in research and clinical practice related to TBI and concussion, including observed heterogeneity, arguably stem from the complexity of the condition itself. To improve understanding of this complexity, we review the current state of research through the lens provided by the interdisciplinary field of systems science, which has been increasingly applied to biomedical issues. The review was conducted iteratively, through multiple phases of literature review, expert interviews, and systems diagramming and represents the first phase in an effort to develop systems models of concussion. The primary focus of this work was to examine concepts and ways of thinking about concussion that currently impede research design and block advancements in care of TBI. Results are presented in the form of a multi-scale conceptual framework intended to synthesize knowledge across disciplines, improve research design, and provide a broader, multi-scale model for understanding concussion pathophysiology, classification, and treatment.
Collapse
Affiliation(s)
- Erin S. Kenzie
- Systems Science Program, Portland State University, Portland, OR, United States
| | - Elle L. Parks
- Systems Science Program, Portland State University, Portland, OR, United States
| | - Erin D. Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Miranda M. Lim
- Sleep Disorders Clinic, Division of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, OR, United States
- Departments of Neurology, Medicine, and Behavioral Neuroscience, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - James C. Chesnutt
- TBI/Concussion Program, Orthopedics & Rehabilitation and Family Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Wayne Wakeland
- Systems Science Program, Portland State University, Portland, OR, United States
| |
Collapse
|
5
|
Abstract
Common neuroimaging findings in mild traumatic brain injury (mTBI), including sport-related concussion (SRC), are reviewed based on computed tomography and magnetic resonance imaging (MRI). Common abnormalities radiologically identified on the day of injury, typically a computed tomographic scan, are in the form of contusions, small subarachnoid or intraparenchymal hemorrhages as well as subdural and epidural collections, edema, and skull fractures. Common follow-up neuroimaging findings with MRI include white matter hyperintensities, hypointense signal abnormalities that reflect prior hemorrhage, focal encephalomalacia, presence of atrophy and/or dilated Virchow-Robins perivascular space. The MRI findings from a large pediatric mTBI study show low frequency of positive MRI findings at 6 months postinjury. The review concludes with an examination of some of the advanced MRI-based image analysis methods that can be performed in the patient who has sustained an mTBI.
Collapse
|
6
|
Newsome MR, Li X, Lin X, Wilde EA, Ott S, Biekman B, Hunter JV, Dash PK, Taylor BA, Levin HS. Functional Connectivity Is Altered in Concussed Adolescent Athletes Despite Medical Clearance to Return to Play: A Preliminary Report. Front Neurol 2016; 7:116. [PMID: 27504104 PMCID: PMC4958621 DOI: 10.3389/fneur.2016.00116] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/06/2016] [Indexed: 01/24/2023] Open
Abstract
Recovery following sports-related concussion (SRC) is slower and often more complicated in young adolescent athletes than in collegiate players. Further, the clinical decision to return to play is currently based on symptoms and cognitive performance without direct knowledge of brain function. We tested the hypothesis that brain functional connectivity (FC) would be aberrant in recently concussed, asymptomatic athletes who had been cleared to return to play. A seed-based FC analysis measured the FC of the default mode network (DMN) (seeds = anterior cingulate cortex, posterior cingulate cortex (PCC), right lateral parietal cortex, and left lateral parietal cortex) 30 days after SRC in asymptomatic high school athletes cleared to return to play (n = 13) and was compared to the FC of high school athletes with orthopedic injury (OI) (n = 13). The SRC group demonstrated greater FC than the OI group between the PCC and the ventral lateral prefrontal cortex, as well as between the right lateral parietal cortex and lateral temporal cortex (with regions both outside of and within the DMN). Additionally, the OI group demonstrated greater FC than the SRC group between right lateral parietal cortex and supramarginal gyrus. When relating the FC results to verbal memory performance approximately 1 week and 1 month after injury, significantly different between-group relations were found for the posterior cingulate and right lateral parietal cortex seeds. However, the groups did not differ in verbal memory at 1 month. We suggest that changes in FC are apparent 1-month post-SRC despite resolution of post-concussion symptoms and recovery of cognitive performance in adolescent athletes cleared to return to play.
Collapse
Affiliation(s)
- Mary R Newsome
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, TX , USA
| | - Xiaoqi Li
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, TX , USA
| | - Xiaodi Lin
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, TX , USA
| | - Elisabeth A Wilde
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Summer Ott
- Department of Orthopedic Surgery, UTHealth McGovern Medical School , Houston, TX , USA
| | - Brian Biekman
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, TX , USA
| | - Jill V Hunter
- Department of Radiology, Texas Children's Hospital , Houston, TX , USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, UTHealth McGovern Medical School , Houston, TX , USA
| | - Brian A Taylor
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Harvey S Levin
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Dickson TJ, Trathen S, Terwiel FA, Waddington G, Adams R. Head injury trends and helmet use in skiers and snowboarders in Western Canada, 2008-2009 to 2012-2013: an ecological study. Scand J Med Sci Sports 2015; 27:236-244. [PMID: 26688174 DOI: 10.1111/sms.12642] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 01/22/2023]
Affiliation(s)
- T. J. Dickson
- University of Canberra Research Institute for Sport and Exercise; University of Canberra; Canberra ACT Australia
| | - S. Trathen
- University of Canberra Research Institute for Sport and Exercise; University of Canberra; Canberra ACT Australia
| | - F. A. Terwiel
- Faculty of Adventure, Culinary Arts and Tourism; Thompson Rivers University; Kamloops BC Canada
| | - G. Waddington
- University of Canberra Research Institute for Sport and Exercise; University of Canberra; Canberra ACT Australia
| | - R. Adams
- University of Canberra Research Institute for Sport and Exercise; University of Canberra; Canberra ACT Australia
| |
Collapse
|
8
|
Montenigro PH, Bernick C, Cantu RC. Clinical features of repetitive traumatic brain injury and chronic traumatic encephalopathy. Brain Pathol 2015; 25:304-17. [PMID: 25904046 PMCID: PMC8029369 DOI: 10.1111/bpa.12250] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease characterized by a distinct pattern of hyperphosphorylated tau (p-tau). Thought to be caused by repetitive concussive and subconcussive injuries, CTE is considered largely preventable. The majority of neuropathologically confirmed cases have occurred in professional contact sport athletes (eg, boxing, football). A recent post-mortem case series has magnified concerns for the public's health following its identification in six high school level athletes. CTE is diagnosed with certainty only following a post-mortem autopsy. Efforts to define the etiology and clinical progression during life are ongoing. The goal of this article is to characterize the clinical concepts associated with short- and long-term effects of repetitive traumatic brain injury, with a special emphasis on new clinical diagnostic criteria for CTE. Utilizing these new diagnostic criteria, two cases of neuropathologically confirmed CTE, one in a professional football player and one in a professional boxer, are reported. Differences in cerebellar pathology in CTE confirmed cases in boxing and football are discussed.
Collapse
Affiliation(s)
- Philip H. Montenigro
- Chronic Traumatic Encephalopathy CenterBoston University School of MedicineBostonMA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMA
| | | | - Robert C. Cantu
- Chronic Traumatic Encephalopathy CenterBoston University School of MedicineBostonMA
- Department of Neurology and NeurosurgeryBoston University School of MedicineBostonMA
- Department of NeurosurgeryEmerson HospitalConcordMA
- Sports Legacy InstituteWalthamMA
| |
Collapse
|
9
|
Semple BD, Lee S, Sadjadi R, Fritz N, Carlson J, Griep C, Ho V, Jang P, Lamb A, Popolizio B, Saini S, Bazarian JJ, Prins ML, Ferriero DM, Basso DM, Noble-Haeusslein LJ. Repetitive concussions in adolescent athletes - translating clinical and experimental research into perspectives on rehabilitation strategies. Front Neurol 2015; 6:69. [PMID: 25883586 PMCID: PMC4382966 DOI: 10.3389/fneur.2015.00069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/13/2015] [Indexed: 12/23/2022] Open
Abstract
Sports-related concussions are particularly common during adolescence, a time when even mild brain injuries may disrupt ongoing brain maturation and result in long-term complications. A recent focus on the consequences of repetitive concussions among professional athletes has prompted the development of several new experimental models in rodents, as well as the revision of guidelines for best management of sports concussions. Here, we consider the utility of rodent models to understand the functional consequences and pathobiology of concussions in the developing brain, identifying the unique behavioral and pathological signatures of concussive brain injuries. The impact of repetitive concussions on behavioral consequences and injury progression is also addressed. In particular, we focus on the epidemiological, clinical, and experimental evidence underlying current recommendations for physical and cognitive rest after concussion, and highlight key areas in which further research is needed. Lastly, we consider how best to promote recovery after injury, recognizing that optimally timed, activity-based rehabilitative strategies may hold promise for the adolescent athlete who has sustained single or repetitive concussions. The purpose of this review is to inform the clinical research community as it strives to develop and optimize evidence-based guidelines for the concussed adolescent, in terms of both acute and long-term management.
Collapse
Affiliation(s)
- Bridgette D. Semple
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Sangmi Lee
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Raha Sadjadi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nora Fritz
- Kennedy Krieger Institute, John Hopkins University, Baltimore, MD, USA
| | - Jaclyn Carlson
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Carrie Griep
- San Francisco State University Graduate Program in Physical Therapy, University of California San Francisco, San Francisco, CA, USA
| | - Vanessa Ho
- San Francisco State University Graduate Program in Physical Therapy, University of California San Francisco, San Francisco, CA, USA
| | - Patrice Jang
- San Francisco State University Graduate Program in Physical Therapy, University of California San Francisco, San Francisco, CA, USA
| | - Annick Lamb
- San Francisco State University Graduate Program in Physical Therapy, University of California San Francisco, San Francisco, CA, USA
| | - Beth Popolizio
- San Francisco State University Graduate Program in Physical Therapy, University of California San Francisco, San Francisco, CA, USA
| | - Sonia Saini
- San Francisco State University Graduate Program in Physical Therapy, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey J. Bazarian
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Mayumi L. Prins
- Department of Neurosurgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| | - Donna M. Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - D. Michele Basso
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, USA
| | - Linda J. Noble-Haeusslein
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Physical Therapy and Rehabilitation Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
McNamee M, Partridge B. Concussion in sports medicine ethics: policy, epistemic and ethical problems. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2013; 13:15-17. [PMID: 24024798 DOI: 10.1080/15265161.2013.828123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|