1
|
Silva H, Girard O, Monteiro J, Gasques M, Sousa A, Nakamura FY. Competing at Altitude Reduces In-Match Physical Demands of Professional Soccer Players Compared With Sea Level. Int J Sports Physiol Perform 2025; 20:131-141. [PMID: 39631388 DOI: 10.1123/ijspp.2024-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE This study examined whether physical demands during soccer matches differ between sea level and altitude, considering variations by playing position. METHODS Thirty-seven professional players were monitored during 22 matches (11 at sea level and 11 at altitudes of 2200-4090 m) with global navigation satellite systems. Independent mean differences were used to compare in-match physical demands (ie, total distance, distance covered at specific speed intervals, accelerations [ACCs] and decelerations [DECs], and maximal speed) between locations for 5 playing positions (central defenders, fullbacks, central midfielders, wide midfielders, and forwards). RESULTS At altitude, players covered shorter total distances (P < .001) and less distance in the 14.4- to 19.8-km/h (P < .001), 19.8- to 25.2-km/h (P < .001), and >25.2-km/h (P < .001) speed ranges. They also performed fewer ACCs (2.0-3.5 m/s2, P < .001; 3.5-6.0 m/s2, P < .001) and DECs (-3.5 to -2 m/s2, P < .001; -6.0 to -3.5 m/s2, P < .001) and achieved lower maximal speeds (P < .001). The impact of altitude varied by position: Central midfielders showed reduced performance in all variables, while central defenders (distance > 25.2 km/h, ACCs [2.0 and 3.5 m/s2], DECs [-3.5 and -2.0 m/s2], and maximal speed), fullbacks (distance > 25.2 km/h, ACCs, and DECs [-3.5 and -2.0 m/s2]), and forwards (distances [total, 19.8-25.2 km/h, and >25.2 km/h] and ACCs [-3.5 and -6.0 m/s2]) presented unclear differences (P > .05) between locations. CONCLUSION Our study highlights the importance of considering playing positions when assessing the in-match activity profiles of sea-level resident soccer players competing at moderate to high altitudes.
Collapse
Affiliation(s)
- Hugo Silva
- Research Center in Sports Sciences, Health Sciences and Human Development-CIDESD, University of Maia, Maia, Portugal
| | - Olivier Girard
- School of Human Sciences (Exercise and Sports Science), University of Western Australia, Perth, WA, Australia
| | | | | | - Ana Sousa
- Research Center in Sports Sciences, Health Sciences and Human Development-CIDESD, University of Maia, Maia, Portugal
| | - Fábio Yuzo Nakamura
- Research Center in Sports Sciences, Health Sciences and Human Development-CIDESD, University of Maia, Maia, Portugal
| |
Collapse
|
2
|
Lindner-Cendrowska K, Leziak K, Bröde P, Fiala D, Konefał M. Prospective heat stress risk assessment for professional soccer players in the context of the 2026 FIFA World Cup. Sci Rep 2024; 14:26976. [PMID: 39609479 PMCID: PMC11604933 DOI: 10.1038/s41598-024-77540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
This study investigates the risk of severe heat stress and associated potential water losses in professional soccer players, considering as well the oxygen content of the inhaled air in the context of the 2026 FIFA World Cup. For the 16 stadiums, hourly values of biometeorological indices (adjusted Universal Thermal Climate Index - UTCI, Water loss - SW and Oxygen volume - Ov) were calculated. UTCI adjustments included modifications to activity levels, movement speeds and clothing configurations to better reflect the level of thermal stress on soccer player during a match. Ten out of the sixteen sites of the 2026 FIFA World Cup are at very high risk of experiencing extreme heat stress conditions. The highest risk of uncompensable thermal stress due to very high average hourly UTCI values above 49.5 °C and excessive water loss (> 1.5 kg/h) occur in the afternoon in stadiums located in Arlington, Houston (USA) and in Monterrey (Mexico). The results of this study will enable optimization of match schedules at individual venues, taking into account the health risks associated with extreme heat stress, but also the physiological reactions to heat potentially affecting the performance of players on the pitch.
Collapse
Affiliation(s)
- Katarzyna Lindner-Cendrowska
- Institute of Geography and Spatial Organization, Polish Academy of Sciences, Twarda 51/55, Warsaw, 00-818, Poland
| | - Kamil Leziak
- Department of Climatology, Faculty of Geography and Regional Studies, University of Warsaw, Krakowskie Przedmieście 30, Warsaw, 00-927, Poland
| | - Peter Bröde
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Dusan Fiala
- ErgonSim-Human Thermal Modelling, Robert-Bosch-Str. 20, 72469, Messstetten, Germany
| | - Marek Konefał
- Department of Human Motor Skills, Wrocław University of Health and Sport Sciences, Paderewskiego 35, Wrocław, 51-612, Poland.
| |
Collapse
|
3
|
Ramchandani R, Florica IT, Zhou Z, Alemi A, Baranchuk A. Review of Athletic Guidelines for High-Altitude Training and Acclimatization. High Alt Med Biol 2024; 25:113-121. [PMID: 38207236 DOI: 10.1089/ham.2023.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Ramchandani, Rashi, Ioana Tereza Florica, Zier Zhou, Aziz Alemi, and Adrian Baranchuk. Review of athletic guidelines for high-altitude training and acclimatization. High Alt Med Biol. 00:000-000, 2024. Introduction: Exposure to high altitude results in hypobaric hypoxia with physiological acclimatization changes that are thought to influence athletic performance. This review summarizes existing literature regarding implications of high-altitude training and altitude-related guidelines from major governing bodies of sports. Methods: A nonsystematic review was performed using PubMed and OVID Medline to identify articles regarding altitude training and guidelines from international governing bodies of various sports. Sports inherently involving training or competing at high altitude were excluded. Results: Important physiological compensatory mechanisms to high-altitude environments include elevations in blood pressure, heart rate, red blood cell mass, tidal volume, and respiratory rate. These responses can have varying effects on athletic performance. Governing sport bodies have limited and differing regulations for training and competition at high altitudes with recommended acclimatization periods ranging from 3 days to 3 weeks. Discussion: Physiological changes in response to high terrestrial altitude exposure can have substantial impacts on athletic performance. Major sport governing bodies have limited regulations and recommendations regarding altitude training and competition. Existing guidelines are variable and lack substantial evidence to support recommendations. Additional studies are needed to clarify the implications of high-altitude exposure on athletic ability to optimize training and competition.
Collapse
Affiliation(s)
- Rashi Ramchandani
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ioana Tereza Florica
- Department of Medicine, Kingston Health Science Center, Queen's University, Kingston, Ontario, Canada
| | - Zier Zhou
- Atherosclerosis, Genomics and Vascular Biology Division, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Aziz Alemi
- Department of Cardiology, Kingston Health Science Center, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Department of Medicine, Kingston Health Science Center, Queen's University, Kingston, Ontario, Canada
- Department of Cardiology, Kingston Health Science Center, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Playing at altitude. Performance of a Mexican professional football team at different level of altitude. APUNTS SPORTS MEDICINE 2022. [DOI: 10.1016/j.apunsm.2022.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
High altitude is associated with pTau deposition, neuroinflammation, and myelin loss. Sci Rep 2022; 12:6839. [PMID: 35477957 PMCID: PMC9046305 DOI: 10.1038/s41598-022-10881-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Mammals are able to adapt to high altitude (HA) if appropriate acclimation occurs. However, specific occupations (professional climbers, pilots, astronauts and other) can be exposed to HA without acclimation and be at a higher risk of brain consequences. In particular, US Air Force U2-pilots have been shown to develop white matter hyperintensities (WMH) on MRI. Whether WMH are due to hypoxia or hypobaria effects is not understood. We compared swine brains exposed to 5000 feet (1524 m) above sea level (SL) with 21% fraction inspired O2 (FiO2) (Control group [C]; n = 5) vs. 30,000 feet (9144 m) above SL with 100% FiO2 group (hypobaric group [HYPOBAR]; n = 6). We performed neuropathologic assessments, molecular analyses, immunohistochemistry (IHC), Western Blotting (WB), and stereology analyses to detect differences between HYPOBAR vs. Controls. Increased neuronal insoluble hyperphosphorylated-Tau (pTau) accumulation was observed across different brain regions, at histological level, in the HYPOBAR vs. Controls. Stereology-based cell counting demonstrated a significant difference (p < 0.01) in pTau positive neurons between HYPOBAR and C in the Hippocampus. Higher levels of soluble pTau in the Hippocampus of HYPOBAR vs. Controls were also detected by WB analyses. Additionally, WB demonstrated an increase of IBA-1 in the Cerebellum and a decrease of myelin basic protein (MBP) in the Hippocampus and Cerebellum of HYPOBAR vs. Controls. These findings illustrate, for the first time, changes occurring in large mammalian brains after exposure to nonhypoxic-hypobaria and open new pathophysiological views on the interaction among hypobaria, pTau accumulation, neuroinflammation, and myelination in large mammals exposed to HA.
Collapse
|
6
|
Henríquez M, Castillo D, Yanci J, Iturricastillo A, Reina R. Physical responses by cerebral palsy footballers in matches played at sea level and moderate altitude. Res Sports Med 2021; 31:296-308. [PMID: 34383571 DOI: 10.1080/15438627.2021.1966011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The main objective of this study was to compare the physical response of para-footballers with cerebral palsy (CP) in official international football matches played at moderate altitude and sea level locations. Eighty-seven international CP footballers participated in this study. We divided participants according to the place of the international competition [sea level group (SLG) and moderate altitude group (MAG)], sport classes (i.e., FT1, FT2, and FT3), and match playing time (i.e., <20 min, 20‒40 min, and >40 min). We recorded the physical response using global position system devices during matches. This study showed that MAG described a lower physical response than SLG on total distance, distance covered at different intensities, and the number of accelerations and decelerations. FT2 and FT3 presented a similar pattern, where we found significant differences for total distance, distance covered at lower and high intensities and moderate accelerations, and decelerations. Considering the playing time during altitude matches, the 20‒40 min and >40 min groups obtained more marked differences in the physical response variables. Para-footballers with CP who competed under altitude conditions showed a lower physical response during football matches, suggesting the implementation of specific preparation and training strategies to face the demanding environmental conditions.
Collapse
Affiliation(s)
- Matías Henríquez
- Department of Sport Sciences, Sports Research Centre, Miguel Hernández University, Elche, Spain
| | - Daniel Castillo
- Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain
| | - Javier Yanci
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), Society, Sports and Physical Exercise Research Group (GIKAFIT), Vitoria-Gasteiz, Spain
| | - Aitor Iturricastillo
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), Society, Sports and Physical Exercise Research Group (GIKAFIT), Vitoria-Gasteiz, Spain
| | - Raul Reina
- Department of Sport Sciences, Sports Research Centre, Miguel Hernández University, Elche, Spain
| |
Collapse
|
7
|
Gibson OR, Taylor L, Watt PW, Maxwell NS. Cross-Adaptation: Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia. Sports Med 2018; 47:1751-1768. [PMID: 28389828 PMCID: PMC5554481 DOI: 10.1007/s40279-017-0717-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To prepare for extremes of heat, cold or low partial pressures of oxygen (O2), humans can undertake a period of acclimation or acclimatization to induce environment-specific adaptations, e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. While these strategies are effective, they are not always feasible due to logistical impracticalities. Cross-adaptation is a term used to describe the phenomenon whereby alternative environmental interventions, e.g. HA or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate-intensity exercise at altitude via adaptations allied to improved O2 delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross-acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on O2 delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA, suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross-tolerance. The effects of CA on markers of cross-tolerance is an area requiring further investigation. Because much of the evidence relating to cross-adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted, given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross-adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK. .,Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK.
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter W Watt
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| |
Collapse
|
8
|
Girard O, Brocherie F, Millet GP. Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review. Sports Med 2018; 47:1931-1949. [PMID: 28451905 DOI: 10.1007/s40279-017-0733-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many sport competitions, typically involving the completion of single- (e.g. track-and-field or track cycling events) and multiple-sprint exercises (e.g. team and racquet sports, cycling races), are staged at terrestrial altitudes ranging from 1000 to 2500 m. Our aim was to comprehensively review the current knowledge on the responses to either acute or chronic altitude exposure relevant to single and multiple sprints. Performance of a single sprint is generally not negatively affected by acute exposure to simulated altitude (i.e. normobaric hypoxia) because an enhanced anaerobic energy release compensates for the reduced aerobic adenosine triphosphate production. Conversely, the reduction in air density in terrestrial altitude (i.e. hypobaric hypoxia) leads to an improved sprinting performance when aerodynamic drag is a limiting factor. With the repetition of maximal efforts, however, repeated-sprint ability is more altered (i.e. with earlier and larger performance decrements) at high altitudes (>3000-3600 m or inspired fraction of oxygen <14.4-13.3%) compared with either normoxia or low-to-moderate altitudes (<3000 m or inspired fraction of oxygen >14.4%). Traditionally, altitude training camps involve chronic exposure to low-to-moderate terrestrial altitudes (<3000 m or inspired fraction of oxygen >14.4%) for inducing haematological adaptations. However, beneficial effects on sprint performance after such altitude interventions are still debated. Recently, innovative 'live low-train high' methods, in isolation or in combination with hypoxic residence, have emerged with the belief that up-regulated non-haematological peripheral adaptations may further improve performance of multiple sprints compared with similar normoxic interventions.
Collapse
Affiliation(s)
- Olivier Girard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Girard O, Billaut F, Christian RJ, Bradley PS, Bishop DJ. Exercise-related sensations contribute to decrease power during repeated cycle sprints with limited influence on neural drive. Eur J Appl Physiol 2017; 117:2171-2179. [DOI: 10.1007/s00421-017-3705-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/22/2017] [Indexed: 01/30/2023]
|
10
|
George TM, Olsen PD, Kimber NE, Shearman JP, Hamilton JG, Hamlin MJ. The Effect of Altitude and Travel on Rugby Union Performance: Analysis of the 2012 Super Rugby Competition. J Strength Cond Res 2016; 29:3360-6. [PMID: 26595129 DOI: 10.1519/jsc.0000000000001204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to investigate whether playing rugby at altitude or after travel (domestic and international) disadvantaged teams. In a retrospective longitudinal study, all matches (N = 125) played in the 2012 Super Rugby Competition were analyzed for key performance indicators (KPI) from coded game data provided by OPTA sports data company. Matches were played in a home-away format in New Zealand, South Africa, and Australia. Teams based at sea level but playing at altitude (1,271-1,753 m) were more likely to miss tackles (mean ± 90% confidence interval, 1.4 ± 1.7) and score fewer points in the first half compared with games at sea level. In the second half of games, sea level teams at altitude were very likely to make fewer gain lines (-4.0 ± 2.7) compared with the second half of games at sea level. The decreased ability to break the defensive line, which may be the result of altitude-induced fatigue, could reduce the likelihood of scoring points and winning a game. Travel also had an effect on KPI, where international travel resulted in more missed tackles (1.7 ± 1.3) and less frequent gain lines (-3.0 ± 1.9) in the first half relative to matches at home; overall, away teams (domestic and international) scored 4 less points in the second half compared with home teams. In conclusion, playing away from home in another country, particularly at altitude, can have a detrimental effect on KPI, which may affect the overall performance and the chances of winning matches.
Collapse
Affiliation(s)
- Tina M George
- 1Department of Applied Sciences and Allied Health, Christchurch Polytechnic Institute of Technology, Christchurch, New Zealand; 2Canterbury Rugby Football Union and Crusaders, Christchurch, New Zealand; and 3Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
11
|
Aldous JWF, Chrismas BCR, Akubat I, Dascombe B, Abt G, Taylor L. Hot and Hypoxic Environments Inhibit Simulated Soccer Performance and Exacerbate Performance Decrements When Combined. Front Physiol 2016; 6:421. [PMID: 26793122 PMCID: PMC4709924 DOI: 10.3389/fphys.2015.00421] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022] Open
Abstract
The effects of heat and/or hypoxia have been well-documented in match-play data. However, large match-to-match variation for key physical performance measures makes environmental inferences difficult to ascertain from soccer match-play. Therefore, the present study aims to investigate the hot (HOT), hypoxic (HYP), and hot-hypoxic (HH) mediated-decrements during a non-motorized treadmill based soccer-specific simulation. Twelve male University soccer players completed three familiarization sessions and four randomized crossover experimental trials of the intermittent Soccer Performance Test (iSPT) in normoxic-temperate (CON: 18°C 50% rH), HOT (30°C; 50% rH), HYP (1000 m; 18°C 50% rH), and HH (1000 m; 30°C; 50% rH). Physical performance and its performance decrements, body temperatures (rectal, skin, and estimated muscle temperature), heart rate (HR), arterial blood oxygen saturation (SaO2), perceived exertion, thermal sensation (TS), body mass changes, blood lactate, and plasma volume were all measured. Performance decrements were similar in HOT and HYP [Total Distance (−4%), High-speed distance (~−8%), and variable run distance (~−12%) covered] and exacerbated in HH [total distance (−9%), high-speed distance (−15%), and variable run distance (−15%)] compared to CON. Peak sprint speed, was 4% greater in HOT compared with CON and HYP and 7% greater in HH. Sprint distance covered was unchanged (p > 0.05) in HOT and HYP and only decreased in HH (−8%) compared with CON. Body mass (−2%), temperatures (+2–5%), and TS (+18%) were altered in HOT. Furthermore, SaO2 (−8%) and HR (+3%) were changed in HYP. Similar changes in body mass and temperatures, HR, TS, and SaO2 were evident in HH to HOT and HYP, however, blood lactate (p < 0.001) and plasma volume (p < 0.001) were only significantly altered in HH. Perceived exertion was elevated (p < 0.05) by 7% in all conditions compared with CON. Regression analysis identified that absolute TS and absolute rise in skin and estimated muscle temperature (r = 0.82, r = 0.84 r = 0.82, respectively; p < 0.05) predicted the hot-mediated-decrements in HOT. The hot, hypoxic, and hot-hypoxic environments impaired physical performance during iSPT. Future interventions should address the increases in TS and body temperatures, to attenuate these decrements on soccer performance.
Collapse
Affiliation(s)
- Jeffrey W F Aldous
- Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of Bedfordshire Bedford, UK
| | - Bryna C R Chrismas
- Sport Science Program, College of Arts and Sciences, Qatar University Doha, Qatar
| | - Ibrahim Akubat
- Department of Physical Education and Sports Studies, Newman University Birmingham, UK
| | - Ben Dascombe
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University Melbourne, VIC, Australia
| | - Grant Abt
- Department of Sport, Health and Exercise Science, The University of Hull Hull, UK
| | - Lee Taylor
- ASPETAR, Qatar Orthopedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Aspire ZoneDoha, Qatar; Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, UK
| |
Collapse
|
12
|
Girard O, Pluim BM. Improving team-sport player's physical performance with altitude training: from beliefs to scientific evidence. Br J Sports Med 2013; 47 Suppl 1:i2-3. [PMID: 24282201 PMCID: PMC3903311 DOI: 10.1136/bjsports-2013-093119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Olivier Girard
- Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, , Doha, Qatar
| | | |
Collapse
|