1
|
Falck RS, Stein RG, Davis JC, Eng JJ, Middleton LE, Hall PA, Liu-Ambrose T. Does Sleep Moderate the Effects of Exercise Training or Complex Mental and Social Activities on Cognitive Function in Adults With Chronic Stroke? Secondary Analysis of a Randomized Trial. J Gerontol A Biol Sci Med Sci 2024; 80:glae264. [PMID: 39514119 PMCID: PMC11632229 DOI: 10.1093/gerona/glae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Exercise (EX) or cognitive and social enrichment (ENRICH) are 2 strategies for promoting cognition poststroke. Whether sleep moderates the effects of EX or ENRICH on cognition in adults with chronic stroke is unknown. METHODS A 3-arm parallel randomized clinical trial among community-dwelling adults aged 55+ years with chronic stroke (ie, ≥12 months since stroke). Participants were randomized to 2× per week EX, ENRICH, or balance and tone control (BAT). At baseline, device-measured sleep duration and efficiency were measured using wrist-worn actigraphy; self-reported quality was measured by Pittsburgh Sleep Quality Index (PSQI). Participants were categorized at baseline as having good or poor device-measured duration, device-measured efficiency, or self-reported quality based on PSQI. The primary cognitive outcome was Alzheimer's Disease Assessment Scale Plus (ADAS-Cog-Plus) measured at baseline, 6 months (end of intervention), and 12 months (6-month follow-up). We examined if baseline sleep categorizations (ie, good vs poor) moderated the effects of EX or ENRICH on ADAS-Cog-Plus. RESULTS We enrolled 120 participants in the trial (EX = 34; ENRICH = 34; BAT = 52). Sleep quality (ie, device-measured sleep efficiency or self-reported sleep quality) categorization moderated effects of EX (but not ENRICH) on ADAS-Cog-Plus. Compared with BAT participants with poor sleep quality, EX participants with poor sleep quality had better ADAS-Cog-Plus performance at 6 months (estimated mean difference for those with poor device-measured sleep efficiency: -0.48; 95% CI [-0.85, -0.10]; p = .010); estimated mean difference for those with poor self-reported sleep quality: -0.38; 95% CI [-0.70, -0.07]; p = .014). There was no effect of EX on ADAS-Cog-Plus for participants with good sleep quality. Device-measured sleep duration did not moderate intervention effects. CONCLUSIONS Exercise is particularly beneficial in improving cognitive function in adults with chronic stroke and poor sleep quality.
Collapse
Affiliation(s)
- Ryan S Falck
- Aging, Mobility and Cognitive Health Laboratory, Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan G Stein
- Aging, Mobility and Cognitive Health Laboratory, Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer C Davis
- Applied Health Economics Laboratory, Faculty of Management, University of British Columbia – Okanagan Campus, Kelowna, British Columbia, Canada
| | - Janice J Eng
- Neurorehabilitation Research Program, GFS Rehabilitation Centre, Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura E Middleton
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Peter A Hall
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility and Cognitive Health Laboratory, Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Hart DA. The Heterogeneity of Post-Menopausal Disease Risk: Could the Basis for Why Only Subsets of Females Are Affected Be Due to a Reversible Epigenetic Modification System Associated with Puberty, Menstrual Cycles, Pregnancy and Lactation, and, Ultimately, Menopause? Int J Mol Sci 2024; 25:3866. [PMID: 38612676 PMCID: PMC11011715 DOI: 10.3390/ijms25073866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
For much of human evolution, the average lifespan was <40 years, due in part to disease, infant mortality, predators, food insecurity, and, for females, complications of childbirth. Thus, for much of evolution, many females did not reach the age of menopause (45-50 years of age) and it is mainly in the past several hundred years that the lifespan has been extended to >75 years, primarily due to public health advances, medical interventions, antibiotics, and nutrition. Therefore, the underlying biological mechanisms responsible for disease risk following menopause must have evolved during the complex processes leading to Homo sapiens to serve functions in the pre-menopausal state. Furthermore, as a primary function for the survival of the species is effective reproduction, it is likely that most of the advantages of having such post-menopausal risks relate to reproduction and the ability to address environmental stresses. This opinion/perspective will be discussed in the context of how such post-menopausal risks could enhance reproduction, with improved survival of offspring, and perhaps why such risks are preserved. Not all post-menopausal females exhibit risk for this set of diseases, and those who do develop such diseases do not have all of the conditions. The diseases of the post-menopausal state do not operate as a unified complex, but as independent variables, with the potential for some overlap. The how and why there would be such heterogeneity if the risk factors serve essential functions during the reproductive years is also discussed and the concept of sets of reversible epigenetic changes associated with puberty, pregnancy, and lactation is offered to explain the observations regarding the distribution of post-menopausal conditions and their potential roles in reproduction. While the involvement of an epigenetic system with a dynamic "modification-demodification-remodification" paradigm contributing to disease risk is a hypothesis at this point, validation of it could lead to a better understanding of post-menopausal disease risk in the context of reproduction with commonalities may also lead to future improved interventions to control such risk after menopause.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
3
|
Demnitz N, Hulme OJ, Siebner HR, Kjaer M, Ebmeier KP, Boraxbekk CJ, Gillan CM. Characterising the covariance pattern between lifestyle factors and structural brain measures: a multivariable replication study of two independent ageing cohorts. Neurobiol Aging 2023; 131:115-123. [PMID: 37619515 DOI: 10.1016/j.neurobiolaging.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Modifiable lifestyle factors have been shown to promote healthy brain ageing. However, studies have typically focused on a single factor at a time. Given that lifestyle factors do not occur in isolation, multivariable analyses provide a more realistic model of the lifestyle-brain relationship. Here, canonical correlation analyses (CCA) examined the relationship between nine lifestyle factors and seven MRI-derived indices of brain structure. The resulting covariance pattern was further explored with Bayesian regressions. CCA analyses were first conducted on a Danish cohort of older adults (n = 251) and then replicated in a British cohort (n = 668). In both cohorts, the latent factors of lifestyle and brain structure were positively correlated (UK: r = .37, p < 0.001; Denmark: r = .27, p < 0.001). In the cross-validation study, the correlation between lifestyle-brain latent factors was r = .10, p = 0.008. However, the pattern of associations differed between datasets. These findings suggest that baseline characterisation and tailoring towards the study sample may be beneficial for achieving targeted lifestyle interventions.
Collapse
Affiliation(s)
- Naiara Demnitz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark.
| | - Oliver J Hulme
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark; London Mathematical Laboratory, London, UK; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark; Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus P Ebmeier
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Carl-Johan Boraxbekk
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Radiation Sciences, Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Claire M Gillan
- School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Barha CK, Starkey SY, Hsiung GYR, Tam R, Liu-Ambrose T. Aerobic exercise improves executive functions in females, but not males, without the BDNF Val66Met polymorphism. Biol Sex Differ 2023; 14:16. [PMID: 37013586 PMCID: PMC10069071 DOI: 10.1186/s13293-023-00499-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Aerobic exercise promotes cognitive function in older adults; however, variability exists in the degree of benefit. The brain-derived neurotropic factor (BDNF) Val66Met polymorphism and biological sex are biological factors that have been proposed as important modifiers of exercise efficacy. Therefore, we assessed whether the effect of aerobic exercise on executive functions was dependent on the BDNFval66met genotype and biological sex. METHODS We used data from a single-blind randomized controlled trial in older adults with subcortical ischemic vascular cognitive impairment (NCT01027858). Fifty-eight older adults were randomly assigned to either the 6 months, three times per week progressive aerobic training (AT) group or the usual care plus education control (CON) group. The secondary aim of the parent study included executive functions which were assessed with the Trail Making Test (B-A) and the Digit Symbol Substitution Test at baseline and trial completion at 6 months. RESULTS Analysis of covariance, controlling for baseline global cognition and baseline executive functions performance (Trail Making Test or Digit Symbol Substitution Test), tested the three-way interaction between experimental group (AT, CON), BDNFval66met genotype (Val/Val carrier, Met carrier), and biological sex (female, male). Significant three-way interactions were found for the Trail Making Test (F(1,48) = 4.412, p < 0.04) and Digit Symbol Substitution Test (F(1,47) = 10.833, p < 0.002). Posthoc analyses showed female Val/Val carriers benefited the most from 6 months of AT compared with CON for Trail Making Test and Digit Symbol Substitution Test performance. Compared with CON, AT did not improve Trail Making Test performance in male Val/Val carriers or Digit Symbol Substitution Test performance in female Met carriers. CONCLUSIONS These results suggest that future randomized controlled trials should take into consideration BDNF genotype and biological sex to better understand the beneficial effects of AT on cognitive function in vascular cognitive impairment to maximize the beneficial effects of exercise and help establish exercise as medicine for cognitive health.
Collapse
Affiliation(s)
- Cindy K Barha
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Samantha Y Starkey
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - G Y Robin Hsiung
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Division of Neurology, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute and University of British Columbia Hospital Clinic for Alzheimer Disease and Related Disorders, Vancouver, Canada
| | - Roger Tam
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada.
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
- Centre for Hip Health and Mobility, Vancouver, Canada.
| |
Collapse
|
5
|
Barha CK, Falck RS, Best JR, Nagamatsu LS, Hsiung GYR, Sheel AW, Hsu CL, Kramer AF, Voss MW, Erickson KI, Davis JC, Shoemaker JK, Boyd L, Crockett RA, Ten Brinke L, Bherer L, Singer J, Galea LAM, Jacova C, Bullock A, Grant S, Liu-Ambrose T. Reshaping the path of mild cognitive impairment by refining exercise prescription: a study protocol of a randomized controlled trial to understand the "what," "for whom," and "how" of exercise to promote cognitive function. Trials 2022; 23:766. [PMID: 36085237 PMCID: PMC9462619 DOI: 10.1186/s13063-022-06699-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Targeted exercise training is a promising strategy for promoting cognitive function and preventing dementia in older age. Despite the utility of exercise as an intervention, variation still exists in exercise-induced cognitive gains and questions remain regarding the type of training (i.e., what), as well as moderators (i.e., for whom) and mechanisms (i.e., how) of benefit. Both aerobic training (AT) and resistance training (RT) enhance cognitive function in older adults without cognitive impairment; however, the vast majority of trials have focused exclusively on AT. Thus, more research is needed on RT, as well as on the combination of AT and RT, in older adults with mild cognitive impairment (MCI), a prodromal stage of dementia. Therefore, we aim to conduct a 6-month, 2 × 2 factorial randomized controlled trial in older adults with MCI to assess the individual effects of AT and RT, and the combined effect of AT and RT on cognitive function and to determine the possible underlying biological mechanisms. Methods Two hundred and sixteen community-dwelling adults, aged 65 to 85 years, with MCI from metropolitan Vancouver will be recruited to participate in this study. Randomization will be stratified by biological sex and participants will be randomly allocated to one of the four experimental groups: (1) 4×/week balance and tone (BAT; i.e., active control); (2) combined 2×/week AT + 2×/week RT; (3) 2×/week AT + 2×/week BAT; or (4) 2×/week RT + 2×/week BAT. The primary outcome is cognitive function as measured by the Alzheimer’s Disease Assessment Scale-Cognitive-Plus. Secondary outcomes include cognitive function, health-related quality of life, physical function, actigraphy measures, questionnaires, and falls. Outcomes will be measured at baseline, 6 months (i.e., trial completion), and 18 months (i.e., 12-month follow-up). Discussion Establishing the efficacy of different types and combinations of exercise training to minimize cognitive decline will advance our ability to prescribe exercise as “medicine” to treat MCI and delay the onset and progression of dementia. This trial is extremely timely as cognitive impairment and dementia pose a growing threat to global public health. Trial registration ClinicalTrials.gov NCT02737878. Registered on April 14, 2016.
Collapse
Affiliation(s)
- Cindy K Barha
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Ryan S Falck
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - John R Best
- Gerontology Research Centre, Simon Fraser University, Vancouver, British Columbia, Canada.,Department of Gerontology, Simon Fraser University, Vancouver, British Columbia, Canada.,Department of Psychiatry, UBC, Vancouver, British Columbia, Canada
| | - Lindsay S Nagamatsu
- Faculty of Health Sciences, School of Kinesiology, Western University, London, Ontario, Canada.,Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Ging-Yuek Robin Hsiung
- Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, British Columbia, Canada.,Division of Neurology, UBC, Vancouver, British Columbia, Canada
| | - A William Sheel
- School of Kinesiology, UBC, Vancouver, British Columbia, Canada
| | - Chun Liang Hsu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Arthur F Kramer
- Department of Psychology, Northeastern University, Boston, MA, USA.,Beckman Institute, University of Illinois, Urbana, IL, USA
| | - Michelle W Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.,Iowa Neuroscience Institute, University of Iowa, IA, Iowa City, USA
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.,Neuroscience Research Institute, AdventHealth, Orlando, FL, USA
| | - Jennifer C Davis
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Social and Economic Change Laboratory, Faculty of Management, UBC-Okanagan, Kelowna, Canada
| | - J Kevin Shoemaker
- Faculty of Health Sciences, School of Kinesiology, Western University, London, Ontario, Canada
| | - Lara Boyd
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, British Columbia, Canada
| | - Rachel A Crockett
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Lisanne Ten Brinke
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Louis Bherer
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada.,Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada.,Research Center, Institut Universitaire de Geriatrie de Montréal, Montreal, Quebec, Canada
| | - Joel Singer
- School of Population and Public Health, UBC, Vancouver, British Columbia, Canada.,Providence Healthcare Research Institute, Centre for Health Evaluation and Outcome Sciences, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, British Columbia, Canada.,Department of Psychology, UBC, Vancouver, British Columbia, Canada
| | - Claudia Jacova
- School of Graduate Psychology, Pacific University, Hillsboro, OR, USA
| | - Alexis Bullock
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Sofia Grant
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, British Columbia, Canada. .,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, British Columbia, Canada. .,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Espin-Garcia O, Baghel M, Brar N, Whittaker JL, Ali SA. Can genetics guide exercise prescriptions in osteoarthritis? FRONTIERS IN REHABILITATION SCIENCES 2022; 3:930421. [PMID: 36188938 PMCID: PMC9397982 DOI: 10.3389/fresc.2022.930421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
Osteoarthritis (OA) is the most common form of arthritis and has a multifactorial etiology. Current management for OA focuses on minimizing pain and functional loss, typically involving pharmacological, physical, psychosocial, and mind-body interventions. However, there remain challenges in determining which patients will benefit most from which interventions. Although exercise-based interventions are recommended as first-line treatments and are known to be beneficial for managing both the disease and illness of OA, the optimal exercise “prescription” is unknown, due in part to our limited understanding of the precise mechanisms underlying its action. Here we present our perspective on the potential role of genetics in guiding exercise prescription for persons with OA. We describe key publications in the areas of exercise and OA, genetics and OA, and exercise and genetics, and point to a paucity of knowledge at the intersection of exercise, genetics, and OA. We suggest there is emerging evidence to support the use of genetics and epigenetics to explain the beneficial effects of exercise for OA. We identify missing links in the existing research relating to exercise, genetics, and OA, and highlight epigenetics as a promising mechanism through which environmental exposures such as exercise may impact OA outcomes. We anticipate future studies will improve our understanding of how genetic and epigenetic factors mediate exercise-based interventions to support implementation and ultimately improve OA patient care.
Collapse
Affiliation(s)
- Osvaldo Espin-Garcia
- Department of Biostatistics, Princess Margaret Cancer Centre and Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health and Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- *Correspondence: Osvaldo Espin-Garcia
| | - Madhu Baghel
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health, Detroit, MI, United States
| | - Navraj Brar
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Jackie L. Whittaker
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Arthritis Research Canada, Vancouver, BC, Canada
| | - Shabana Amanda Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Shabana Amanda Ali
| |
Collapse
|
7
|
Hsiao YW, Tzeng HY, Chu CM, Lan HY, Chiang HH. A Novel Intensity-Based Approach to Increasing Prefrontal Cerebral Oxygenation by Walking Exercise. J Pers Med 2022; 12:jpm12040510. [PMID: 35455626 PMCID: PMC9027192 DOI: 10.3390/jpm12040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022] Open
Abstract
Regional cerebral blood flow (rCBF) increases after moderately intense exercise and is significantly correlated with cognitive function. However, no intensity-based physiological indicator for enhancing rCBF during low- to-moderate-intensity exercise has been proposed. The purpose of this study was to develop a physiological indicator housed in a wearable device to determine whether low-to-moderate intensity walking can increase rCBF. A cross-sectional study with four parallel arms was performed. Each of 114 participants was randomly assigned to either the moderate, low-to-moderate, low, or very low walking intensity groups. A novel dynamic cardiac force meter (CFM) was used to quantify walking intensity. Heart rate and hemoencephalography (HEG) were measured during each phase of the session. Compared to baseline, HEG significantly increased in both the submaximal exercise and recovery phases in members of the low-to-moderate intensity group but not the very low intensity group. Low-to-moderate intensity walking improves prefrontal cerebral blood oxygenation. The present results demonstrate the usefulness of a dynamic CFM housed in a wearable device for quantifying the intensity of walking exercise aimed at increasing prefrontal blood oxygenation. The results of the study may help guide further development of exercise strategies for brain disease patients and the ageing population.
Collapse
Affiliation(s)
- Ya-Wen Hsiao
- School of Nursing, National Defense Medical Center, No 161, Sec. 6, Minquan E. Road, Neihu Dist., Taipei 11490, Taiwan; (Y.-W.H.); (H.-Y.T.); (H.-Y.L.)
- Department of Nursing, Tri-Service General Hospital, No 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei 10490, Taiwan
| | - Hsin-Ya Tzeng
- School of Nursing, National Defense Medical Center, No 161, Sec. 6, Minquan E. Road, Neihu Dist., Taipei 11490, Taiwan; (Y.-W.H.); (H.-Y.T.); (H.-Y.L.)
- Department of Nursing, Tri-Service General Hospital, No 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei 10490, Taiwan
| | - Chi-Ming Chu
- Division of Biostatistics and Medical Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei 114201, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114201, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
- Big Data Research Center, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Public Health, School of Public Health, China Medical University, Taichung 404328, Taiwan
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Hsiang-Yun Lan
- School of Nursing, National Defense Medical Center, No 161, Sec. 6, Minquan E. Road, Neihu Dist., Taipei 11490, Taiwan; (Y.-W.H.); (H.-Y.T.); (H.-Y.L.)
| | - Hui-Hsun Chiang
- School of Nursing, National Defense Medical Center, No 161, Sec. 6, Minquan E. Road, Neihu Dist., Taipei 11490, Taiwan; (Y.-W.H.); (H.-Y.T.); (H.-Y.L.)
- Correspondence: ; Tel.: +886-2-87923100 (ext. 18761)
| |
Collapse
|
8
|
Hart DA. Learning From Human Responses to Deconditioning Environments: Improved Understanding of the "Use It or Lose It" Principle. Front Sports Act Living 2021; 3:685845. [PMID: 34927066 PMCID: PMC8677937 DOI: 10.3389/fspor.2021.685845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Physical activity, mobility or patterned mobility (i.e., exercise) is intrinsic to the functioning of Homo sapiens, and required for maintenance of health. Thus, systems such as the musculoskeletal and cardiovascular systems appear to require constant reinforcement or conditioning to maintain integrity. Loss of conditioning or development of chronic deconditioning can have multiple consequences. The study of different types of deconditioning and their prevention or reversal can offer a number of clues to the regulation of these systems and point to how deconditioning poses risk for disease development and progression. From the study of deconditioning associated with spaceflight, a condition not predicted by evolution, prolonged bedrest, protracted sedentary behavior, as well as menopause and obesity and their consequences, provide a background to better understand human heterogeneity and how physical fitness may impact the risks for chronic conditions subsequent to the deconditioning. The effectiveness of optimized physical activity and exercise protocols likely depend on the nature of the deconditioning, the sex and genetics of the individual, whether one is addressing prevention of deconditioning-associated disease or disease-associated progression, and whether it is focused on acute or chronic deconditioning associated with different forms of deconditioning. While considerable research effort has gone into preventing deconditioning, the study of the process of deconditioning and its endpoints can provide clues to the regulation of the affected systems and their contributions to human heterogeneity that have been framed by the boundary conditions of Earth during evolution and the "use it or lose it" principle of regulation. Such information regarding heterogeneity that is elaborated by the study of deconditioning environments could enhance the effectiveness of individualized interventions to prevent deconditions or rescue those who have become deconditioned.
Collapse
Affiliation(s)
- David A Hart
- Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Family Practice, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Chow ZS, Moreland AT, Macpherson H, Teo WP. The Central Mechanisms of Resistance Training and Its Effects on Cognitive Function. Sports Med 2021; 51:2483-2506. [PMID: 34417978 DOI: 10.1007/s40279-021-01535-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2021] [Indexed: 01/17/2023]
Abstract
Resistance exercise is used extensively in athletic and general populations to induce neuromuscular adaptations to increase muscle size and performance. Exercise parameters such as exercise frequency, intensity, duration and modality are carefully manipulated to induce specific adaptations to the neuromuscular system. While the benefits of resistance exercise on the neuromuscular system are well documented, there is growing evidence to suggest that resistance exercise, even when performed acutely, can lead to neuroplastic changes within the central nervous system (CNS) and improve cognitive functioning. As such, resistance exercise has been proposed as a novel adjuvant rehabilitation strategy in populations that suffer from neurological or neurocognitive impairments (i.e. Parkinson's and Alzheimer's dementia) or even to attenuate age-related declines in cognitive health. In this review, we present evidence for the neuroplastic effects and cognitive benefits of resistance exercise and propose some of the underlying mechanisms that drive neuroplasticity following resistance training. We will further discuss the effects of exercise parameters, in particular exercise frequency, intensity, duration and modality to improve cognitive health. Lastly, we will highlight some of the existing limitations in the literature surrounding the use of resistance exercise to improve cognitive function and propose considerations to improve future studies in this field. In summary, the current evidence supports the role of resistance exercise, as a stand alone or in combination with aerobic exercise, for benefiting cognitive health and that it should be considered as an adjuvant therapy to treat age- or disease-related cognitive declines.
Collapse
Affiliation(s)
- Zi-Siong Chow
- College of Medicine, Biology and Environment Research, School of Population Health, Australian National University (ANU), Canberra, ACT, Australia
| | - Ashleigh T Moreland
- STEM College, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, 3000, Australia
| | - Helen Macpherson
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia. .,Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore.
| |
Collapse
|
10
|
Herold F, Törpel A, Hamacher D, Budde H, Zou L, Strobach T, Müller NG, Gronwald T. Causes and Consequences of Interindividual Response Variability: A Call to Apply a More Rigorous Research Design in Acute Exercise-Cognition Studies. Front Physiol 2021; 12:682891. [PMID: 34366881 PMCID: PMC8339555 DOI: 10.3389/fphys.2021.682891] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
The different responses of humans to an apparently equivalent stimulus are called interindividual response variability. This phenomenon has gained more and more attention in research in recent years. The research field of exercise-cognition has also taken up this topic, as shown by a growing number of studies published in the past decade. In this perspective article, we aim to prompt the progress of this research field by (i) discussing the causes and consequences of interindividual variability, (ii) critically examining published studies that have investigated interindividual variability of neurocognitive outcome parameters in response to acute physical exercises, and (iii) providing recommendations for future studies, based on our critical examination. The provided recommendations, which advocate for a more rigorous study design, are intended to help researchers in the field to design studies allowing them to draw robust conclusions. This, in turn, is very likely to foster the development of this research field and the practical application of the findings.
Collapse
Affiliation(s)
- Fabian Herold
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.,Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | | | - Dennis Hamacher
- Department of Sport Science, German University for Health and Sports (DHGS), Berlin, Germany
| | - Henning Budde
- Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Liye Zou
- Exercise and Mental Health Laboratory, Institute of KEEP Collaborative Innovation, School of Psychology, Shenzhen University, Shenzhen, China
| | - Tilo Strobach
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
| | - Notger G Müller
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.,Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Thomas Gronwald
- Department of Performance, Neuroscience, Therapy and Health, Faculty of Health Sciences, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|