1
|
Joyner MJ, Wiggins CC, Baker SE, Klassen SA, Senefeld JW. Exercise and Experiments of Nature. Compr Physiol 2023; 13:4879-4907. [PMID: 37358508 PMCID: PMC10853940 DOI: 10.1002/cphy.c220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In this article, we highlight the contributions of passive experiments that address important exercise-related questions in integrative physiology and medicine. Passive experiments differ from active experiments in that passive experiments involve limited or no active intervention to generate observations and test hypotheses. Experiments of nature and natural experiments are two types of passive experiments. Experiments of nature include research participants with rare genetic or acquired conditions that facilitate exploration of specific physiological mechanisms. In this way, experiments of nature are parallel to classical "knockout" animal models among human research participants. Natural experiments are gleaned from data sets that allow population-based questions to be addressed. An advantage of both types of passive experiments is that more extreme and/or prolonged exposures to physiological and behavioral stimuli are possible in humans. In this article, we discuss a number of key passive experiments that have generated foundational medical knowledge or mechanistic physiological insights related to exercise. Both natural experiments and experiments of nature will be essential to generate and test hypotheses about the limits of human adaptability to stressors like exercise. © 2023 American Physiological Society. Compr Physiol 13:4879-4907, 2023.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad C Wiggins
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah E Baker
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen A Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jonathon W Senefeld
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Casadevall A, Joyner MJ, Pirofski LA, Senefeld JW, Shoham S, Sullivan D, Paneth N, Focosi D. Convalescent plasma therapy in COVID-19: Unravelling the data using the principles of antibody therapy. Expert Rev Respir Med 2023:1-15. [PMID: 37129285 DOI: 10.1080/17476348.2023.2208349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION When the COVID-19 pandemic struck no specific therapies were available and many turned to COVID-19 convalescent plasma (CCP), a form of antibody therapy. The literature provides mixed evidence for CCP efficacy. AREAS COVERED PubMed was searched using the words COVID-19 and convalescent plasma and individual study designs were evaluated for adherence to the three principles of antibody therapy, i.e. that plasma 1) contain specific antibody; 2) have enough specific antibody to mediate a biological effect; and 3) be administered early in the course of disease. Using this approach, a diverse and seemingly contradictory collection of clinical findings was distilled into a consistent picture whereby CCP was effective when used according to the above principles of antibody therapy. In addition, CCP therapy in immunocompromised patients is useful at any time in the course of disease. EXPERT OPINION CCP is safe and effective when used appropriately. Today, most of humanity has some immunity to SARS-CoV-2 from vaccines and infection, which has lessened the need for CCP in the general population. However, COVID-19 in immunocompromised patients is a major therapeutic challenge, and with the deauthorization of all SARS-CoV-2-spike protein-directed monoclonal antibodies, CCP is the only antibody therapy available for this population.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nigel Paneth
- Departments of Epidemiology & Biostatistics and Pediatrics & Human Development, Michigan State University, East Lansing, MI, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
3
|
Rana R, Kant R, Kumra T, Gupta S, Rana DS, Ganguly NK. An update on SARS-CoV-2 immunization and future directions. Front Pharmacol 2023; 14:1125305. [PMID: 36969857 PMCID: PMC10033701 DOI: 10.3389/fphar.2023.1125305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
Millions of people have died as a result of SARS-CoV-2, which was first discovered in China and has since spread globally. Patients with SARS-CoV-2 infection may show a range of symptoms, including fever, coughing, and shortness of breath, or they may show no symptoms at all. To treat COVID-19 symptoms and avoid serious infections, many medications and vaccinations have been employed. However, to entirely eradicate COVID-19 from the world, next-generation vaccine research is required because of the devastating consequences it is having for humanity and every nation's economy. Scientists are working hard to eradicate this dangerous virus across the world. SARS-CoV-2 has also undergone significant mutation, leading to distinct viral types such as the alpha, beta, gamma, delta, and omicron variants. This has sparked discussion about the effectiveness of current vaccines for the newly formed variants. A proper comparison of these vaccinations is required to compare their efficacy as the number of people immunized against SARS-CoV-2 globally increases. Population-level statistics evaluating the capacity of these vaccines to reduce infection are therefore being developed. In this paper, we analyze the many vaccines on the market in terms of their production process, price, dosage needed, and efficacy. This article also discusses the challenges of achieving herd immunity, the likelihood of reinfection, and the importance of convalescent plasma therapy in reducing infection.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Ravi Kant
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Tanya Kumra
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Sneha Gupta
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | | | | |
Collapse
|
4
|
Franchini M, Casadevall A, Joyner MJ, Focosi D. WHO Is Recommending against the Use of COVID-19 Convalescent Plasma in Immunocompromised Patients? Life (Basel) 2023; 13:134. [PMID: 36676084 PMCID: PMC9867306 DOI: 10.3390/life13010134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Since December 2019, SARS-CoV-2 is ravaging the globe, currently accounting for over 660 million infected people and more than 6 [...].
Collapse
Affiliation(s)
- Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
5
|
Franchini M, Focosi D, Mengoli C, Percivalle E, Sammartino JC, Ferrari A, Zani M, Glingani C, Baldanti F. Neutralizing antibody levels against Sars-CoV-2 Variants of concern delta and omicron in vaccine Breakthrough-Infected blood donors. Transfusion 2022; 62:1171-1176. [PMID: 35426131 DOI: 10.1111/trf.16887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Novel SARS-CoV-2 variants of concern (VOC) Delta and Omicron are able to escape some monoclonal antibody therapies, making again COVID-19 convalescent plasma (CCP) a potential frontline treatment. STUDY DESIGN/METHODS In this study, we investigated the kinetics of anti-SARS-CoV-2 neutralizing antibodies (nAbs) against VOCs Delta and Omicron in vaccine breakthrough infected plasma donors. Serum samples from 19 donors were collected at the time of plasma donation and tested for anti-SARS-CoV-2 nAbs (using live authentic VOC viral neutralization test) and IgG (Liaison® SARS-CoV-2 S1/S2 and Liaison® SARS-CoV-2 TrimericS IgG assays, DiaSorin). Measures were correlated with different variables, including the time between last vaccine dose and CCP donation, and time between SARS-COV-2 infection and CCP donation. RESULTS nAb titers against VOC Delta and Omicron were directly related to the time interval since last vaccine dose to CCP donation, but inversely related to time since COVID19 breakthrough infection. DISCUSSION SARS-CoV-2 breakthrough infection in vaccinated in donors boosts nAb titers against VOCs Delta and Omicron, but such titers decay shortly after infection. Therefore, CCP must be collected early after vaccine breakthrough infection.
Collapse
Affiliation(s)
- Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Carlo Mengoli
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical Surgical Diagnostic and Pediatrics Sciences, University of Pavia, Pavia, Italy
| | - Josè Camilla Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical Surgical Diagnostic and Pediatrics Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical Surgical Diagnostic and Pediatrics Sciences, University of Pavia, Pavia, Italy
| | - Matteo Zani
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Claudia Glingani
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical Surgical Diagnostic and Pediatrics Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|