1
|
Liu X, Zhang J. Continuous Glucose Monitoring: A Transformative Approach to the Detection of Prediabetes. J Multidiscip Healthc 2024; 17:5513-5519. [PMID: 39600717 PMCID: PMC11590642 DOI: 10.2147/jmdh.s493128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Prediabetes, as an intermediary stage between normal glucose homeostasis and overt diabetes, affects an estimated 720 million individuals worldwide, highlighting the urgent need for proactive intervention strategies. Continuous glucose monitoring (CGM) emerges as a transformative tool, offering unprecedented insights into glycemic dynamics and facilitating tailored therapeutic interventions. This perspective scores the clinical significance of even slightly elevated fasting blood glucose levels and the critical role of early intervention. CGM technology provides real-time, continuous data on glucose concentrations, surpassing the constraints of conventional monitoring methods. Both retrospectively analyzed and real-time CGM systems offer valuable tools for glycemic management, each with unique strengths. The integration of CGM into routine care can detect early indicators of type 2 diabetes, inform the development of personalized intervention strategies, and foster patient engagement and empowerment. Despite challenges such as cost and the need for effective utilization through training and education, CGM's potential to revolutionize prediabetes management is evident. Future research should focus on refining CGM algorithms, exploring personalized intervention strategies, and leveraging wearable technology and artificial intelligence advancements to optimize glycemic control and patient well-being.
Collapse
Affiliation(s)
- Xueen Liu
- Department of Nursing, Beijing Hepingli Hospital, Beijing, People’s Republic of China
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Chan PZ, Jin E, Jansson M, Chew HSJ. AI-Based Noninvasive Blood Glucose Monitoring: Scoping Review. J Med Internet Res 2024; 26:e58892. [PMID: 39561353 PMCID: PMC11615544 DOI: 10.2196/58892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Current blood glucose monitoring (BGM) methods are often invasive and require repetitive pricking of a finger to obtain blood samples, predisposing individuals to pain, discomfort, and infection. Noninvasive blood glucose monitoring (NIBGM) is ideal for minimizing discomfort, reducing the risk of infection, and increasing convenience. OBJECTIVE This review aimed to map the use cases of artificial intelligence (AI) in NIBGM. METHODS A systematic scoping review was conducted according to the Arksey O'Malley five-step framework. Eight electronic databases (CINAHL, Embase, PubMed, Web of Science, Scopus, The Cochrane-Central Library, ACM Digital Library, and IEEE Xplore) were searched from inception until February 8, 2023. Study selection was conducted by 2 independent reviewers, descriptive analysis was conducted, and findings were presented narratively. Study characteristics (author, country, type of publication, study design, population characteristics, mean age, types of noninvasive techniques used, and application, as well as characteristics of the BGM systems) were extracted independently and cross-checked by 2 investigators. Methodological quality appraisal was conducted using the Checklist for assessment of medical AI. RESULTS A total of 33 papers were included, representing studies from Asia, the United States, Europe, the Middle East, and Africa published between 2005 and 2023. Most studies used optical techniques (n=19, 58%) to estimate blood glucose levels (n=27, 82%). Others used electrochemical sensors (n=4), imaging (n=2), mixed techniques (n=2), and tissue impedance (n=1). Accuracy ranged from 35.56% to 94.23% and Clarke error grid (A+B) ranged from 86.91% to 100%. The most popular machine learning algorithm used was random forest (n=10) and the most popular deep learning model was the artificial neural network (n=6). The mean overall checklist for assessment of medical AI score on the included papers was 33.5 (SD 3.09), suggesting an average of medium quality. The studies reviewed demonstrate that some AI techniques can accurately predict glucose levels from noninvasive sources while enhancing comfort and ease of use for patients. However, the overall range of accuracy was wide due to the heterogeneity of models and input data. CONCLUSIONS Efforts are needed to standardize and regulate the use of AI technologies in BGM, as well as develop consensus guidelines and protocols to ensure the quality and safety of AI-assisted monitoring systems. The use of AI for NIBGM is a promising area of research that has the potential to revolutionize diabetes management.
Collapse
Affiliation(s)
- Pin Zhong Chan
- Department of Nursing, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Eric Jin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Miia Jansson
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
| | - Han Shi Jocelyn Chew
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Sheng B, Pushpanathan K, Guan Z, Lim QH, Lim ZW, Yew SME, Goh JHL, Bee YM, Sabanayagam C, Sevdalis N, Lim CC, Lim CT, Shaw J, Jia W, Ekinci EI, Simó R, Lim LL, Li H, Tham YC. Artificial intelligence for diabetes care: current and future prospects. Lancet Diabetes Endocrinol 2024; 12:569-595. [PMID: 39054035 DOI: 10.1016/s2213-8587(24)00154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
Artificial intelligence (AI) use in diabetes care is increasingly being explored to personalise care for people with diabetes and adapt treatments for complex presentations. However, the rapid advancement of AI also introduces challenges such as potential biases, ethical considerations, and implementation challenges in ensuring that its deployment is equitable. Ensuring inclusive and ethical developments of AI technology can empower both health-care providers and people with diabetes in managing the condition. In this Review, we explore and summarise the current and future prospects of AI across the diabetes care continuum, from enhancing screening and diagnosis to optimising treatment and predicting and managing complications.
Collapse
Affiliation(s)
- Bin Sheng
- Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China; Key Laboratory of Artificial Intelligence, Ministry of Education, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Krithi Pushpanathan
- Centre of Innovation and Precision Eye Health, Department of Ophthalmology, National University of Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhouyu Guan
- Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Quan Hziung Lim
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhi Wei Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Samantha Min Er Yew
- Centre of Innovation and Precision Eye Health, Department of Ophthalmology, National University of Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Yong Mong Bee
- Department of Endocrinology, Singapore General Hospital, Singapore; SingHealth Duke-National University of Singapore Diabetes Centre, Singapore Health Services, Singapore
| | - Charumathi Sabanayagam
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Nick Sevdalis
- Centre for Behavioural and Implementation Science Interventions, National University of Singapore, Singapore
| | | | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore; Institute for Health Innovation and Technology, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore
| | - Jonathan Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Weiping Jia
- Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Elif Ilhan Ekinci
- Australian Centre for Accelerating Diabetes Innovations, Melbourne Medical School and Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Department of Endocrinology, Austin Health, Melbourne, VIC, Australia
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron University Hospital and Vall d'Hebron Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lee-Ling Lim
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Asia Diabetes Foundation, Hong Kong Special Administrative Region, China
| | - Huating Li
- Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China.
| | - Yih-Chung Tham
- Centre of Innovation and Precision Eye Health, Department of Ophthalmology, National University of Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| |
Collapse
|
4
|
Mittal R, Koutras N, Maya J, Lemos JRN, Hirani K. Blood glucose monitoring devices for type 1 diabetes: a journey from the food and drug administration approval to market availability. Front Endocrinol (Lausanne) 2024; 15:1352302. [PMID: 38559693 PMCID: PMC10978642 DOI: 10.3389/fendo.2024.1352302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Blood glucose monitoring constitutes a pivotal element in the clinical management of Type 1 diabetes (T1D), a globally escalating metabolic disorder. Continuous glucose monitoring (CGM) devices have demonstrated efficacy in optimizing glycemic control, mitigating adverse health outcomes, and augmenting the overall quality of life for individuals afflicted with T1D. Recent progress in the field encompasses the refinement of electrochemical sensors, which enhances the effectiveness of blood glucose monitoring. This progress empowers patients to assume greater control over their health, alleviating the burdens associated with their condition, and contributing to the overall alleviation of the healthcare system. The introduction of novel medical devices, whether derived from existing prototypes or originating as innovative creations, necessitates adherence to a rigorous approval process regulated by the Food and Drug Administration (FDA). Diverse device classifications, stratified by their associated risks, dictate distinct approval pathways, each characterized by varying timelines. This review underscores recent advancements in blood glucose monitoring devices primarily based on electrochemical sensors and elucidates their regulatory journey towards FDA approval. The advent of innovative, non-invasive blood glucose monitoring devices holds promise for maintaining stringent glycemic control, thereby preventing T1D-associated comorbidities, and extending the life expectancy of affected individuals.
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nicole Koutras
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Jonathan Maya
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Joana R. N. Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
5
|
Abstract
For diabetics, taking regular blood glucose measurements is crucial. However, traditional blood glucose monitoring methods are invasive and unfriendly to diabetics. Recent studies have proposed a biofluid-based glucose sensing technique that creatively combines wearable devices with noninvasive glucose monitoring technology to enhance diabetes management. This is a revolutionary advance in the diagnosis and management of diabetes, reflects the thoughtful modernization of medicine, and promotes the development of digital medicine. This paper reviews the research progress of noninvasive continuous blood glucose monitoring (CGM), with a focus on the biological liquids that replace blood in monitoring systems, the technical principles of continuous noninvasive glucose detection, and the output and calibration of sensor signals. In addition, the existing limits of noninvasive CGM systems and prospects for the future are discussed. This work serves as a resource for further promoting the development of noninvasive CGM systems.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
6
|
Ahmed A, Aziz S, Abd-Alrazaq A, Farooq F, Househ M, Sheikh J. The Effectiveness of Wearable Devices Using Artificial Intelligence for Blood Glucose Level Forecasting or Prediction: Systematic Review. J Med Internet Res 2023; 25:e40259. [PMID: 36917147 PMCID: PMC10131991 DOI: 10.2196/40259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 01/21/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND In 2021 alone, diabetes mellitus, a metabolic disorder primarily characterized by abnormally high blood glucose (BG) levels, affected 537 million people globally, and over 6 million deaths were reported. The use of noninvasive technologies, such as wearable devices (WDs), to regulate and monitor BG in people with diabetes is a relatively new concept and yet in its infancy. Noninvasive WDs coupled with machine learning (ML) techniques have the potential to understand and conclude meaningful information from the gathered data and provide clinically meaningful advanced analytics for the purpose of forecasting or prediction. OBJECTIVE The purpose of this study is to provide a systematic review complete with a quality assessment looking at diabetes effectiveness of using artificial intelligence (AI) in WDs for forecasting or predicting BG levels. METHODS We searched 7 of the most popular bibliographic databases. Two reviewers performed study selection and data extraction independently before cross-checking the extracted data. A narrative approach was used to synthesize the data. Quality assessment was performed using an adapted version of the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. RESULTS From the initial 3872 studies, the features from 12 studies were reported after filtering according to our predefined inclusion criteria. The reference standard in all studies overall (n=11, 92%) was classified as low, as all ground truths were easily replicable. Since the data input to AI technology was highly standardized and there was no effect of flow or time frame on the final output, both factors were categorized in a low-risk group (n=11, 92%). It was observed that classical ML approaches were deployed by half of the studies, the most popular being ensemble-boosted trees (random forest). The most common evaluation metric used was Clarke grid error (n=7, 58%), followed by root mean square error (n=5, 42%). The wide usage of photoplethysmogram and near-infrared sensors was observed on wrist-worn devices. CONCLUSIONS This review has provided the most extensive work to date summarizing WDs that use ML for diabetic-related BG level forecasting or prediction. Although current studies are few, this study suggests that the general quality of the studies was considered high, as revealed by the QUADAS-2 assessment tool. Further validation is needed for commercially available devices, but we envisage that WDs in general have the potential to remove the need for invasive devices completely for glucose monitoring in the not-too-distant future. TRIAL REGISTRATION PROSPERO CRD42022303175; https://tinyurl.com/3n9jaayc.
Collapse
Affiliation(s)
- Arfan Ahmed
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sarah Aziz
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Alaa Abd-Alrazaq
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Faisal Farooq
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Mowafa Househ
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Javaid Sheikh
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
7
|
Ahmed A, Aziz S, Qidwai U, Abd-Alrazaq A, Sheikh J. Performance of artificial intelligence models in estimating blood glucose level among diabetic patients using non-invasive wearable device data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE UPDATE 2023; 3:100094. [DOI: 10.1016/j.cmpbup.2023.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
van den Brink WJ, van den Broek TJ, Palmisano S, Wopereis S, de Hoogh IM. Digital Biomarkers for Personalized Nutrition: Predicting Meal Moments and Interstitial Glucose with Non-Invasive, Wearable Technologies. Nutrients 2022; 14:4465. [PMID: 36364728 PMCID: PMC9654068 DOI: 10.3390/nu14214465] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
Digital health technologies may support the management and prevention of disease through personalized lifestyle interventions. Wearables and smartphones are increasingly used to continuously monitor health and disease in everyday life, targeting health maintenance. Here, we aim to demonstrate the potential of wearables and smartphones to (1) detect eating moments and (2) predict and explain individual glucose levels in healthy individuals, ultimately supporting health self-management. Twenty-four individuals collected continuous data from interstitial glucose monitoring, food logging, activity, and sleep tracking over 14 days. We demonstrated the use of continuous glucose monitoring and activity tracking in detecting eating moments with a prediction model showing an accuracy of 92.3% (87.2-96%) and 76.8% (74.3-81.2%) in the training and test datasets, respectively. Additionally, we showed the prediction of glucose peaks from food logging, activity tracking, and sleep monitoring with an overall mean absolute error of 0.32 (+/-0.04) mmol/L for the training data and 0.62 (+/-0.15) mmol/L for the test data. With Shapley additive explanations, the personal lifestyle elements important for predicting individual glucose peaks were identified, providing a basis for personalized lifestyle advice. Pending further validation of these digital biomarkers, they show promise in supporting the prevention and management of type 2 diabetes through personalized lifestyle recommendations.
Collapse
Affiliation(s)
- Willem J. van den Brink
- Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Ahmed A, Aziz S, Abd-Alrazaq A, Farooq F, Sheikh J. Overview of Artificial Intelligence-Driven Wearable Devices for Diabetes: Scoping Review. J Med Internet Res 2022; 24:e36010. [PMID: 35943772 PMCID: PMC9399882 DOI: 10.2196/36010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Prevalence of diabetes has steadily increased over the last few decades with 1.5 million deaths reported in 2012 alone. Traditionally, analyzing patients with diabetes has remained a largely invasive approach. Wearable devices (WDs) make use of sensors historically reserved for hospital settings. WDs coupled with artificial intelligence (AI) algorithms show promise to help understand and conclude meaningful information from the gathered data and provide advanced and clinically meaningful analytics. OBJECTIVE This review aimed to provide an overview of AI-driven WD features for diabetes and their use in monitoring diabetes-related parameters. METHODS We searched 7 of the most popular bibliographic databases using 3 groups of search terms related to diabetes, WDs, and AI. A 2-stage process was followed for study selection: reading abstracts and titles followed by full-text screening. Two reviewers independently performed study selection and data extraction, and disagreements were resolved by consensus. A narrative approach was used to synthesize the data. RESULTS From an initial 3872 studies, we report the features from 37 studies post filtering according to our predefined inclusion criteria. Most of the studies targeted type 1 diabetes, type 2 diabetes, or both (21/37, 57%). Many studies (15/37, 41%) reported blood glucose as their main measurement. More than half of the studies (21/37, 57%) had the aim of estimation and prediction of glucose or glucose level monitoring. Over half of the reviewed studies looked at wrist-worn devices. Only 41% of the study devices were commercially available. We observed the use of multiple sensors with photoplethysmography sensors being most prevalent in 32% (12/37) of studies. Studies reported and compared >1 machine learning (ML) model with high levels of accuracy. Support vector machine was the most reported (13/37, 35%), followed by random forest (12/37, 32%). CONCLUSIONS This review is the most extensive work, to date, summarizing WDs that use ML for people with diabetes, and provides research direction to those wanting to further contribute to this emerging field. Given the advancements in WD technologies replacing the need for invasive hospital setting devices, we see great advancement potential in this domain. Further work is needed to validate the ML approaches on clinical data from WDs and provide meaningful analytics that could serve as data gathering, monitoring, prediction, classification, and recommendation devices in the context of diabetes.
Collapse
Affiliation(s)
- Arfan Ahmed
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sarah Aziz
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Alaa Abd-Alrazaq
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Faisal Farooq
- Center for Digital Health and Precision Medicine, Qatar Computing Research Institute, Doha, Qatar
| | - Javaid Sheikh
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
10
|
Ahmed A, Aziz S, Abd-alrazaq A, Farooq F, Househ M, Sheikh J. The Effectiveness of Wearable Devices Using Artificial Intelligence for Blood Glucose Level Forecasting or Prediction: Systematic Review (Preprint).. [DOI: 10.2196/preprints.40259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
BACKGROUND
In 2021 alone, diabetes mellitus, a metabolic disorder primarily characterized by abnormally high blood glucose (BG) levels, affected 537 million people globally, and over 6 million deaths were reported. The use of noninvasive technologies, such as wearable devices (WDs), to regulate and monitor BG in people with diabetes is a relatively new concept and yet in its infancy. Noninvasive WDs coupled with machine learning (ML) techniques have the potential to understand and conclude meaningful information from the gathered data and provide clinically meaningful advanced analytics for the purpose of forecasting or prediction.
OBJECTIVE
The purpose of this study is to provide a systematic review complete with a quality assessment looking at diabetes effectiveness of using artificial intelligence (AI) in WDs for forecasting or predicting BG levels.
METHODS
We searched 7 of the most popular bibliographic databases. Two reviewers performed study selection and data extraction independently before cross-checking the extracted data. A narrative approach was used to synthesize the data. Quality assessment was performed using an adapted version of the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool.
RESULTS
From the initial 3872 studies, the features from 12 studies were reported after filtering according to our predefined inclusion criteria. The reference standard in all studies overall (n=11, 92%) was classified as low, as all ground truths were easily replicable. Since the data input to AI technology was highly standardized and there was no effect of flow or time frame on the final output, both factors were categorized in a low-risk group (n=11, 92%). It was observed that classical ML approaches were deployed by half of the studies, the most popular being ensemble-boosted trees (random forest). The most common evaluation metric used was Clarke grid error (n=7, 58%), followed by root mean square error (n=5, 42%). The wide usage of photoplethysmogram and near-infrared sensors was observed on wrist-worn devices.
CONCLUSIONS
This review has provided the most extensive work to date summarizing WDs that use ML for diabetic-related BG level forecasting or prediction. Although current studies are few, this study suggests that the general quality of the studies was considered high, as revealed by the QUADAS-2 assessment tool. Further validation is needed for commercially available devices, but we envisage that WDs in general have the potential to remove the need for invasive devices completely for glucose monitoring in the not-too-distant future.
CLINICALTRIAL
PROSPERO CRD42022303175; https://tinyurl.com/3n9jaayc
Collapse
|