1
|
Saroj S, Kana Veedu A, Reddy U C, Venkatesan N, Verma AK, Kannoth Manheri M. Modulation of Doxorubicin-Induced ROS Accumulation in Cardiomyocytes Using Ibuprofen-Conjugated Synthetic Lipids as Carriers. ACS APPLIED BIO MATERIALS 2025. [PMID: 40408375 DOI: 10.1021/acsabm.4c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Conjugation of an NSAID such as ibuprofen to the head group of oxanorbornane-based lipids and the use of their aggregates as carriers for doxorubicin (Dox) are discussed here. These conjugates were characterized by various spectroscopic techniques, including 2D-NMR, and insights into their assembly were gathered through PXRD, AFM, SEM, DLS, and qNano techniques. Free lipids as well as their formulations (lipid:cholesterol:Dox in a 3:1.5:2 molar ratio) showed a high tendency to form solid lipid particles, which was verified by TEM analysis. The presence of the ibuprofen unit led to an increase in interlipid spacing and a characteristic change in their packing. Active loading through a pH gradient allowed us to achieve high drug entrapment and a controlled release profile. The formulation AT3.3, prepared by this method, showed a Dox entrapment of ∼90%, with a controlled release of ∼18% by the end of 24 h; only ∼66% of the entrapped Dox was released by the end of 5 days. Cytotoxicity studies in NIH3T3 cells and hemolytic assay results showed that these lipids and their formulations have a good safety profile. Results from flow cytometry experiments in A549 cells revealed that the formulation AT3.3 induces effects similar to free Dox, with cell cycle arrest predominantly at the S phase and G2/M phase. At the same time, the response from the blank formulation was comparable to that of the control. Confocal microscopy studies in NIH3T3 and A549 cells showed that free Dox gets localized mainly in the nucleus, while the use of the carrier (AT3.3) causes significant localization of the drug on the cytoplasmic side as well. ROS induction due to free Dox and its formulation (AT3.3) in cardiomyocytes and A549 cells was also compared, and the results showed a protective effect in cardiomyocytes when using this formulation.
Collapse
Affiliation(s)
- Soumya Saroj
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Akshaya Kana Veedu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Chandrasekhar Reddy U
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Nalini Venkatesan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Abhishek K Verma
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | | |
Collapse
|
2
|
Aldhubiab B, Almuqbil RM, Nair AB. Harnessing the Power of Nanocarriers to Exploit the Tumor Microenvironment for Enhanced Cancer Therapy. Pharmaceuticals (Basel) 2025; 18:746. [PMID: 40430563 PMCID: PMC12115050 DOI: 10.3390/ph18050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
The tumor microenvironment (TME) has a major role in malignancy and its complex nature can mediate tumor survival, metastasis, immune evasion, and drug resistance. Thus, reprogramming or regulating the immunosuppressive TME has a significant contribution to make in cancer therapy. Targeting TME with nanocarriers (NCs) has been widely used to directly deliver anticancer drugs to control TME, which has revealed auspicious outcomes. TME can be reprogrammed by using a range of NCs to regulate immunosuppressive factors and activate immunostimulatory cells. Moreover, TME can be ameliorated via regulating the redox environment, oxygen content, and pH value of the tumor site. NCs have the capacity to provide site-specific delivery of therapeutic agents, controlled release, enhanced solubility and stability, decreased toxicities, and enhanced pharmacokinetics as well as biodistribution. Numerous NCs have demonstrated their potential by inducing distinct anticancer mechanisms by delivering a range of anticancer drugs in various preclinical studies, including metal NCs, liposomal NCs, solid lipid NCs, micelles, nanoemulsions, polymer-based NCs, dendrimers, nanoclays, nanocrystals, and many more. Some of them have already received US Food and Drug Administration approval, and some have entered different clinical phases. However, there are several challenges in NC-mediated TME targeting, including scale-up of NC-based cancer therapy, rapid clearance of NCs by the mononuclear phagocyte system, and TME heterogeneity. In order to harness the full potential of NCs in tumor treatment, there are several factors that need to be carefully studied, including optimization of drug loading into NCs, NC-associated immunogenicity, and biocompatibility for the successful translation of NC-based anticancer therapies into clinical practice. In this review, a range of NCs and their applications in drug delivery to remodel TME for cancer therapy are extensively discussed. Moreover, findings from numerous preclinical and clinical studies with these NCs are also highlighted.
Collapse
Affiliation(s)
- Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (R.M.A.); (A.B.N.)
| | | | | |
Collapse
|
3
|
Mohan H, Salaroglio IC, Bartkowski M, Courtney K, Andreana I, Limongi T, Arenal R, Riganti C, Arpicco S, Giordani S. B/N-doped carbon nano-onions as nanocarriers for targeted breast cancer therapy. NANOSCALE 2025; 17:12108-12123. [PMID: 40183172 DOI: 10.1039/d4nr04990j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Cancer is one of the leading causes of death worldwide and represents a significant burden on global health systems. Many existing chemotherapy treatments come with severe side effects, ranging from hair loss to cardiotoxicity, and many types of cancer express chemotherapy resistance, such as triple-negative breast cancer. This study presents a novel boron/nitrogen-doped carbon nano-onion (BN-CNO) based nanocarrier system that can deliver doxorubicin (DOX) to cancer cells via a pH-dependent drug release mechanism. The nanocarrier formulation consists of a hyaluronic acid/phospholipid conjugate (HA-DMPE) that is non-covalently bound to the BN-CNOs upon which DOX is loaded via π-π stacking interactions. The HA-DMPE/BN-CNO/DOX system enhances the uptake and anticancer effects of DOX in MDA-MB-468 and MDA-MB-231 TNBC cells whilst reducing the cardiotoxicity of DOX in AC-16 human cardiomyocytes.
Collapse
Affiliation(s)
- Hugh Mohan
- School of Chemical Sciences, Lonsdale building, Dublin City University, Dublin, Ireland.
| | - Iris Chiara Salaroglio
- Department of Oncology and Molecular Biotechnology Center "G. Tarone", piazza Nizza 44, 10126, Torino, Italy
| | - Michał Bartkowski
- School of Chemical Sciences, Lonsdale building, Dublin City University, Dublin, Ireland.
| | - Kellyjean Courtney
- School of Chemical Sciences, Lonsdale building, Dublin City University, Dublin, Ireland.
| | - Ilaria Andreana
- Department of Drug Science and Technology, Via Pietro Giuria, 9, 10125, Torino, Italy.
| | - Tania Limongi
- Department of Drug Science and Technology, Via Pietro Giuria, 9, 10125, Torino, Italy.
| | - Raul Arenal
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-U. de Zaragoza, 50009, Zaragoza, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018, Zaragoza, Spain
- ARAID Foundation, 50018, Zaragoza, Spain
| | - Chiara Riganti
- Department of Oncology and Molecular Biotechnology Center "G. Tarone", piazza Nizza 44, 10126, Torino, Italy
| | - Silvia Arpicco
- Department of Drug Science and Technology, Via Pietro Giuria, 9, 10125, Torino, Italy.
| | - Silvia Giordani
- School of Chemical Sciences, Lonsdale building, Dublin City University, Dublin, Ireland.
| |
Collapse
|
4
|
Wang Y, Zhu N, Liu J, Chen F, Song Y, Ma Y, Yang Z, Wang D. Role of tumor microenvironment in ovarian cancer metastasis and clinical advancements. J Transl Med 2025; 23:539. [PMID: 40369674 PMCID: PMC12079989 DOI: 10.1186/s12967-025-06508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy worldwide, characterized by heterogeneity at the molecular, cellular and anatomical levels. Most patients are diagnosed at an advanced stage, characterized by widespread peritoneal metastasis. Despite optimal cytoreductive surgery and platinum-based chemotherapy, peritoneal spread and recurrence of OC are common, resulting in poor prognoses. The overall survival of patients with OC has not substantially improved over the past few decades, highlighting the urgent necessity of new treatment options. Unlike the classical lymphatic and hematogenous metastasis observed in other malignancies, OC primarily metastasizes through widespread peritoneal seeding. Tumor cells (the "seeds") exhibit specific affinities for certain organ microenvironments (the "soil"), and metastatic foci can only form when there is compatibility between the "seeds" and "soil." Recent studies have highlighted the tumor microenvironment (TME) as a critical factor influencing the interactions between the "seeds" and "soil," with ascites and the local peritoneal microenvironment playing pivotal roles in the initiation and progression of OC. Prior to metastasis, the interplay among tumor cells, immunosuppressive cells, and stromal cells leads to the formation of an immunosuppressive pre-metastatic niche in specific sites. This includes characteristic alterations in tumor cells, recruitment and functional anomalies of immune cells, and dysregulation of stromal cell distribution and function. TME-mediated crosstalk between cancer and stromal cells drives tumor progression, therapy resistance, and metastasis. In this review, we summarize the current knowledge on the onset and metastatic progression of OC. We provide a comprehensive discussion of the characteristics and functions of TME related to OC metastasis, as well as its association with peritoneal spread. We also outline ongoing relevant clinical trials, aiming to offer new insights for identifying potential effective biomarkers and therapeutic targets in future clinical practice.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Na Zhu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Jing Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Fang Chen
- Department of Gynecology, People's Hospital of Liaoning Province, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Yang Song
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yue Ma
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Zhuo Yang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| |
Collapse
|
5
|
Esmaeilpour D, Ghomi M, Zare EN, Sillanpää M. Nanotechnology-Enhanced siRNA Delivery: Revolutionizing Cancer Therapy. ACS APPLIED BIO MATERIALS 2025. [PMID: 40354673 DOI: 10.1021/acsabm.5c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
RNA interference (RNAi) has emerged as a transformative approach for cancer therapy, enabling precise gene silencing through small interfering RNA (siRNA). However, the clinical application of siRNA-based treatments faces challenges such as rapid degradation, inefficient cellular uptake, and immune system clearance. Nanotechnology-enhanced siRNA delivery has revolutionized cancer therapy by addressing these limitations, improving siRNA stability, tumor-specific targeting, and therapeutic efficacy. Recent advancements in nanocarrier engineering have introduced innovative strategies to enhance the safety and precision of siRNA-based therapies, offering new opportunities for personalized medicine. This review highlights three key innovations in nanotechnology-enhanced siRNA delivery: artificial intelligence (AI)-driven nanocarrier design, multifunctional nanoparticles for combined therapeutic strategies, and biomimetic nanocarriers for enhanced biocompatibility. AI-driven nanocarriers utilize machine learning algorithms to optimize nanoparticle properties, improving drug release profiles and minimizing off-target effects. Multifunctional nanoparticles integrate siRNA with chemotherapy, immunotherapy, or photothermal therapy, enabling synergistic treatment approaches that enhance therapeutic outcomes and reduce drug resistance. Biomimetic nanocarriers, including exosome-mimicking systems and cell-membrane-coated nanoparticles, improve circulation time, immune evasion, and targeted tumor delivery. These innovations collectively enhance the precision, efficiency, and safety of siRNA-based cancer therapies. The scope and novelty of these advancements lie in their ability to overcome the primary barriers of siRNA delivery while paving the way for clinically viable solutions. This review provides a comprehensive analysis of the latest developments in nanocarrier fabrication, preclinical and clinical studies, and safety assessments. By integrating AI-driven design, multifunctionality, and biomimicry, nanotechnology-enhanced siRNA delivery holds immense potential for the future of precision cancer therapy.
Collapse
Affiliation(s)
- Donya Esmaeilpour
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Science, Shiraz 71345-1583, Iran
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843 Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
6
|
Uti DE, Alum EU, Atangwho IJ, Ugwu OPC, Egbung GE, Aja PM. Lipid-based nano-carriers for the delivery of anti-obesity natural compounds: advances in targeted delivery and precision therapeutics. J Nanobiotechnology 2025; 23:336. [PMID: 40336110 PMCID: PMC12057057 DOI: 10.1186/s12951-025-03412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Obesity is a major global health challenge, contributing to metabolic disorders such as type 2 diabetes, cardiovascular diseases, and hypertension. The increasing prevalence of obesity, driven by sedentary lifestyles, poor dietary habits, and genetic predisposition, underscores the urgent need for effective therapeutic strategies. Conventional pharmacological treatments, including appetite suppressants and metabolic modulators, often fail to provide sustainable weight loss due to side effects, poor adherence, and limited long-term efficacy. As a result, natural bioactive compounds have gained attention for their anti-obesity potential. However, their clinical application is hindered by poor bioavailability, rapid metabolism, and inefficient delivery. Lipid-based nano-carriers, including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, offer a promising solution by enhancing the solubility, stability, and targeted delivery of these compounds. These advanced delivery systems improve bioactive retention, enable controlled release, and enhance therapeutic action on adipose tissue and metabolic pathways. Additionally, functionalized and stimulus-responsive nanocarriers present innovative approaches for precision obesity treatment. Despite these advancements, challenges remain in large-scale production, regulatory approval, and long-term safety. Overcoming these barriers is critical to ensuring the successful clinical translation of nano-formulated therapies. This review explores the potential of lipid-based nano-carriers in optimizing the therapeutic efficacy of natural anti-obesity compounds and highlights their role in advancing next-generation obesity management strategies.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue, Nigeria.
| | - Esther Ugo Alum
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Okechukwu Paul-Chima Ugwu
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Patrick M Aja
- Department of Medical Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
7
|
Kumar A, Shahvej SK, Yadav P, Modi U, Yadav AK, Solanki R, Bhatia D. Clinical Applications of Targeted Nanomaterials. Pharmaceutics 2025; 17:379. [PMID: 40143042 PMCID: PMC11944548 DOI: 10.3390/pharmaceutics17030379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Targeted nanomaterials are at the forefront of advancements in nanomedicine due to their unique and versatile properties. These include nanoscale size, shape, surface chemistry, mechanical flexibility, fluorescence, optical behavior, magnetic and electronic characteristics, as well as biocompatibility and biodegradability. These attributes enable their application across diverse fields, including drug delivery. This review explores the fundamental characteristics of nanomaterials and emphasizes their importance in clinical applications. It further delves into methodologies for nanoparticle programming alongside discussions on clinical trials and case studies. We discussed some of the promising nanomaterials, such as polymeric nanoparticles, carbon-based nanoparticles, and metallic nanoparticles, and their role in biomedical applications. This review underscores significant advancements in translating nanomaterials into clinical applications and highlights the potential of these innovative approaches in revolutionizing the medical field.
Collapse
Affiliation(s)
- Ankesh Kumar
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - SK Shahvej
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Pankaj Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Unnati Modi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit K. Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
8
|
Hassanzadeh-Khanmiri M, Moshari A, Kheradmand R, Haghgouei T, Homaei M, Charsouei S, Mobed A. Nanomedicine: a cost-effective and powerful platform for managing neurodegenerative diseases. Metab Brain Dis 2025; 40:142. [PMID: 40067468 DOI: 10.1007/s11011-025-01564-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025]
Abstract
Neurodegenerative diseases (NDDs) are characterized by the chronic and progressive deterioration of the structure and function of the nervous system, imposing a significant burden on patients, their families, and society. These diseases have a gradual onset and continually worsen, making early diagnosis challenging. Current drugs on the market struggle to effectively cross the blood-brain barrier (BBB), leading to poor outcomes and limited therapeutic success. Consequently, there is an urgent need for new diagnostic tools and treatment strategies. To address these challenges, nanotechnology-based drug delivery systems-such as liposomes, micelles, dendrimers, and solid lipid nanoparticles (SLNs)-have emerged as promising solutions. This study provides a comprehensive review of recent advances in nanomedicine and nanotechnology-based platforms, alongside an exploration of ND mechanisms. The authors conducted a systematic literature search across relevant databases such as PubMed, Scopus, and Web of Science, focusing on peer-reviewed articles, reviews, and clinical studies published within the last 5 to 10 years. Additionally, this paper addresses the challenges faced by nanomedicines and delivery systems, offering insights into future directions in the field and the need for further research to establish their clinical viability as alternatives to current therapies.
Collapse
Affiliation(s)
| | - Amirreza Moshari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Kheradmand
- Division of Pharmacology and Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Tannaz Haghgouei
- Division of Pharmacology and Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Maryam Homaei
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Division of Pharmacology and Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Tabriz Neuroscience Research Center (NRSC), Neurology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Health Management and Safety Promotion, Tabriz, Iran
| | - Saeid Charsouei
- Tabriz Neuroscience Research Center (NRSC), Neurology Department, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mobed
- Social Determinants of Health Research Center, Health Management and Safety Promotion, Tabriz, Iran.
| |
Collapse
|