1
|
Miao M, Liu X, Zhang H, Dai H. Immuno-inflammatory mechanisms in cardio-oncology: new hopes for immunotargeted therapies. Front Oncol 2025; 15:1516977. [PMID: 40182041 PMCID: PMC11966441 DOI: 10.3389/fonc.2025.1516977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Cardio-oncology is an emerging interdisciplinary field concerned with cancer treatment-related cardiovascular toxicities (CTR-CVT) and concomitant cardiovascular diseases (CVD) in patients with cancer. Inflammation and immune system dysregulation are common features of tumors and cardiovascular disease (CVD). In addition to the mutual exacerbating effect through inflammation, tumor treatments, including immunotherapy, chemotherapy, radiation therapy, and targeted therapy, may induce immune inflammatory reactions leading to cardiovascular damage. Cancer immunotherapy is currently a new method of cancer treatment. Immunotherapeutic agents, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptor T cell immunotherapy (CAR-T), mRNA vaccines, etc., can induce anti-tumor effects by enhancing the host immune response to eliminate tumor cells. They have achieved remarkable therapeutic efficacy in clinical settings but lead to many immune-related adverse events (irAEs), especially CTR-CVT. Establishing specific evaluation, diagnostic, and monitoring criteria (e.g., inflammatory biomarkers) for both immunotherapy and anti-inflammatory therapy-related cardiovascular toxicity is vital to guide clinical practice. This article explores the role of immune response and inflammation in tumor cardiology, unravels the underlying mechanisms, and provides improved methods for monitoring and treating in CTR-CVT in the field of cardio-oncology.
Collapse
Affiliation(s)
- Meiqi Miao
- Department of Cardiology, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Xinxin Liu
- Postdoctoral Mobile Station, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- The Innovation Base, Mudanjiang Collaborative Innovation Center for the Development and Application of Northern Medicinal Resources, Mudanjiang, China
| | - Han Zhang
- Department of Cardiology, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hailong Dai
- Department of Cardiology, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Cao W, Yang Z, Mo L, Liu Z, Wang J, Zhang Z, Wang K, Pan W. Causal relationship between immune cells and risk of heart failure: evidence from a Mendelian randomization study. Front Cardiovasc Med 2025; 11:1473905. [PMID: 39917605 PMCID: PMC11798955 DOI: 10.3389/fcvm.2024.1473905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/26/2024] [Indexed: 02/09/2025] Open
Abstract
Background Heart failure (HF) is a clinical syndrome resulting from structural damage or dysfunction of the heart. Previous investigations have highlighted the critical involvement of immune cells in the progression of heart failure, with distinct roles attributed to different types of immune cells. The objective of the current research was to explore the potential connections between immune characteristics and the development of HF, as well as to ascertain the nature of the causality between these factors. Methods To assess the causal association of immunological profiles with HF based on publicly available genome-wide studies, we employed a two-sample Mendelian randomization technique, utilizing the inverse variance weighted (IVW) method as our primary analytical approach. In addition, we assessed heterogeneity and cross-sectional pleiotropy through sensitivity analyses. Results A two-sample Mendelian randomization (MR) analysis was conducted using IVW as the primary method. At a significance level of 0.001, we identified 40 immunophenotypes that have a significant causal relationship with HF. There is a significant causal relationship between these phenotypes and heart failure. These immunophenotypes, 8 of which were in B cells, 5 in cDC, 2 in T cell maturation stage, 2 in monocytes, 3 in myeloid cells, 7 in TBNK and 13 in Treg. Sensitivity analyses were conducted to validate the strength and reliability of the MR findings. Conclusions Our study suggests that there appears to be a causal effect between multiple immune cells on heart failure. This discovery provides a new avenue for the development of therapeutic treatments for HF and a new target for drug development.
Collapse
Affiliation(s)
- Wenjing Cao
- Department of Cardiology, Department of Geriatric Medicine, Foshan Women and Children's Hospital, Foshan, Guangdong, China
| | - Zefu Yang
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Liumei Mo
- Department of Cardiology, Department of Geriatric Medicine, Foshan Women and Children's Hospital, Foshan, Guangdong, China
| | - Zhenhao Liu
- Department of Cardiovascular Medicine, Pingxiang People's Hospital, Jiangxi, China
| | - Jiawei Wang
- Department of Critical Care Medicine, Jieyang Third People's Hospital, Jieyang, Guangdong, China
| | - Zhenhong Zhang
- Department of Cardiology Medical, The Second People's Hospital of Foshan, Foshan, China
| | - Kui Wang
- The First Clinical Medical College, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wei Pan
- Department of Cardiology, Department of Geriatric Medicine, Foshan Women and Children's Hospital, Foshan, Guangdong, China
| |
Collapse
|
3
|
Hattori Y, Hattori K, Ishii K, Kobayashi M. Challenging and target-based shifting strategies for heart failure treatment: An update from the last decades. Biochem Pharmacol 2024; 224:116232. [PMID: 38648905 DOI: 10.1016/j.bcp.2024.116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Heart failure (HF) is a major global health problem afflicting millions worldwide. Despite the significant advances in therapies and prevention, HF still carries very high morbidity and mortality, requiring enormous healthcare-related expenditure, and the search for new weapons goes on. Following initial treatment strategies targeting inotropism and congestion, attention has focused on offsetting the neurohormonal overactivation and three main therapies, including angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor antagonists, β-adrenoceptor antagonists, and mineralocorticoid receptor antagonists, have been the foundation of standard treatment for patients with HF. Recently, a paradigm shift, including angiotensin receptor-neprilysin inhibitor, sodium glucose co-transporter 2 inhibitor, and ivabradine, has been added. Moreover, soluble guanylate cyclase stimulator, elamipretide, and omecamtiv mecarbil have come out as a next-generation therapeutic agent for patients with HF. Although these pharmacologic therapies have been significantly successful in relieving symptoms, there is still no complete cure for HF. We may be currently entering a new era of treatment for HF with animal experiments and human clinical trials assessing the value of antibody-based immunotherapy and gene therapy as a novel therapeutic strategy. Such tempting therapies still have some challenges to be addressed but may become a weighty option for treatment of HF. This review article will compile the paradigm shifts in HF treatment over the past dozen years or so and illustrate current landscape of antibody-based immunotherapy and gene therapy as a new therapeutic algorithm for patients with HF.
Collapse
Affiliation(s)
- Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan; Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masanobu Kobayashi
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan
| |
Collapse
|
4
|
Zhang RYK, Cochran BJ, Thomas SR, Rye KA. Impact of Reperfusion on Temporal Immune Cell Dynamics After Myocardial Infarction. J Am Heart Assoc 2023; 12:e027600. [PMID: 36789837 PMCID: PMC10111498 DOI: 10.1161/jaha.122.027600] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Excessive inflammation and impaired healing of cardiac tissue following a myocardial infarction (MI) can drive the development of heart failure. Cardiac repair begins immediately after the onset of MI and continues for months. The repair process can be divided into the following 3 overlapping phases, each having distinct functions and sequelae: the inflammatory phase, the proliferative phase, and the maturation phase. Macrophages, neutrophils, and lymphocytes are present in the myocardium throughout the repair process and govern the duration and function of each of these phases. However, changes in the functions of these cell types across each phase are poorly characterized. Numerous immunomodulatory therapies that specifically target inflammation have been developed for promoting cardiac repair and preventing heart failure after MI. However, these treatments have been largely unsuccessful in large-scale clinical randomized controlled trials. A potential explanation for this failure is the lack of a thorough understanding of the time-dependent evolution of the functions of immune cells after a major cardiovascular event. Failure to account for this temporal plasticity in cell function may reduce the efficacy of immunomodulatory approaches that target cardiac repair. This review is concerned with how the functions of different immune cells change with time following an MI. Improved understanding of the temporal changes in immune cell function is important for the future development of effective and targeted treatments for preventing heart failure after MI.
Collapse
Affiliation(s)
| | - Blake J Cochran
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Shane R Thomas
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Kerry-Anne Rye
- School of Medical Sciences University of New South Wales Sydney New South Wales
| |
Collapse
|
5
|
Van Linthout S, Volk HD. Immuno-cardio-oncology: Killing two birds with one stone? Front Immunol 2022; 13:1018772. [PMID: 36466820 PMCID: PMC9714344 DOI: 10.3389/fimmu.2022.1018772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 07/28/2023] Open
Abstract
Inflammation and a dysregulated immune system are common denominators of cancer and cardiovascular disease (CVD). Immuno-cardio-oncology addresses the interconnected immunological aspect in both cancer and CVD and the integration of immunotherapies and anti-inflammatory therapies in both distinct disease entities. Building on prominent examples of convergent inflammation (IL-1ß biology) and immune disbalance (CD20 cells) in cancer and CVD/heart failure, the review tackles both the roadblocks and opportunities of repurposed use of IL-1ß drugs and anti-CD20 antibodies in both fields, and discusses the use of advanced therapies e.g. chimeric antigen receptor (CAR) T cells, that can address the raising burden of both cancer and CVD. Finally, it is discussed how inspired by precision medicine in oncology, the use of biomarker-driven patient stratification is needed to better guide anti-inflammatory/immunomodulatory therapeutic interventions in cardiology.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité-University Medicine Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité-University Medicine Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Institute of Medical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
6
|
Bermea KC, Kostelecky N, Rousseau ST, Lin CY, Adamo L. The human myocardium harbors a population of naive B-cells with a distinctive gene expression signature conserved across species. Front Immunol 2022; 13:973211. [PMID: 36248879 PMCID: PMC9563334 DOI: 10.3389/fimmu.2022.973211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Cardiac immunology studies in murine models have identified a sizeable population of myocardial B-cells and have shown that its modulation represents a promising strategy to develop novel therapies for heart failure. However, scarce data on B-cells in the human heart leaves unclear whether findings in rodents are relevant to human biology. Methods We performed immunohistochemical stains to characterize the amount and distribution of B-cells in human hearts, analyzing both fresh and post-mortem tissue. To gain insight into the biology of human myocardial B-cells we analyzed publicly-available spatial transcriptomics and single-cell sequencing datasets of myocardial and peripheral blood mononuclear cells (PBMCs). We validated these findings on primary B-cells sorted from the heart and peripheral blood of left ventricular assistive device recipients. To identify biological pathways upregulated in myocardial B-cells across species, we compared differential gene expression in myocardial vs peripheral blood B-cells across the studied human datasets and published rodent datasets. Results In healthy human heart samples, we found B-cells at a ratio of 1:8 compared to T-cells (2.41 ± 0.45 vs 19.36 ± 4.43, p-value <0.001). Myocardial B-cells were more abundant in the interstitium compared with the intravascular space (p-value=0.011), and also more abundant in the myocardium vs. epicardium (p-value=0.048). Single-cell gene expression analysis showed that the human myocardium harbored mostly naive B-cells with a gene expression profile distinct from that of PBMC B-cells. Cross-comparison of differentially-expressed genes in myocardial vs. PBMC B-cells across human and rodent datasets identified 703 genes with consistent differential gene expression across species (binomial p-value=2.9e-48). KEGG pathway analysis highlighted "B-cell receptor signaling pathway," "Antigen processing and presentation," and "Cytokine-cytokine receptor interaction" among the top pathways upregulated in cardiac B-cells (FDR <0.001) conserved between species. Conclusions Like the murine heart, the human heart harbors naive B-cells that are both intravascular and extravascular. Human myocardial B-cells are fewer and more evenly distributed between these two compartments than rodent myocardial B-cells. However, analysis of single-gene expression data indicates that the biological function of myocardial B-cells is conserved across species.
Collapse
Affiliation(s)
- Kevin C. Bermea
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicolas Kostelecky
- Department of Pathology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Sylvie T. Rousseau
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chieh-Yu Lin
- Department of Pathology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Bermea K, Bhalodia A, Huff A, Rousseau S, Adamo L. The Role of B Cells in Cardiomyopathy and Heart Failure. Curr Cardiol Rep 2022; 24:935-946. [PMID: 35689723 PMCID: PMC9422953 DOI: 10.1007/s11886-022-01722-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW To summarize the current knowledge on the role that B lymphocytes play in heart failure. RECENT FINDINGS Several studies from murine models have shown that B cells modulate cardiac adaptation to injury and ultimately affect the degree of cardiac dysfunction after acute ischemic damage. In addition, a B cell-modulating small molecule was recently shown to have beneficial effects in humans with heart failure with preserved ejection fraction. B lymphocytes are specialized immune cells present in all jawed vertebrates. They are characteristically known for their ability to produce antibodies, but they have other functions and are important players in virtually all forms of immune responses. A growing body of evidence indicates that B cells are intimately connected with the heart and that B cell dysregulation might play a role in the pathogenesis and progression of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. B cells are therefore gathering attention as potential targets for the development of novel immunomodulatory-based treatments for heart failure.
Collapse
Affiliation(s)
- Kevin Bermea
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Aashik Bhalodia
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Angelo Huff
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sylvie Rousseau
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Ciucci G, Colliva A, Vuerich R, Pompilio G, Zacchigna S. Biologics and cardiac disease: challenges and opportunities. Trends Pharmacol Sci 2022; 43:894-905. [PMID: 35779965 DOI: 10.1016/j.tips.2022.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 10/31/2022]
Abstract
Biologics are revolutionizing the treatment of chronic diseases, such as cancer and monogenic disorders, by overcoming the limits of classic therapeutic approaches using small molecules. However, the clinical use of biologics is limited for cardiovascular diseases (CVDs) , which are the primary cause of morbidity and mortality worldwide. Here, we review the state-of-the-art use of biologics for cardiac disorders and provide a framework for understanding why they still struggle to enter the field. Some limitations are common and intrinsic to all biological drugs, whereas others depend on the complexity of cardiac disease. In our opinion, delineating these struggles will be valuable in developing and accelerating the approval of a new generation of biologics for CVDs.
Collapse
Affiliation(s)
- Giulio Ciucci
- Cardiovascular Biology Laboratory, ICGEB Trieste, Trieste, Italy
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, ICGEB Trieste, Trieste, Italy; University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology Laboratory, ICGEB Trieste, Trieste, Italy; University of Trieste, Department of Life Sciences, Trieste, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, ICGEB Trieste, Trieste, Italy; University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy.
| |
Collapse
|
9
|
Zhang X, Sun Y, Wang N, Zhang Y, Xia Y, Liu Y. Immunomodulatory Treatment Strategies Targeting B Cells for Heart Failure. Front Pharmacol 2022; 13:854592. [PMID: 35350762 PMCID: PMC8957947 DOI: 10.3389/fphar.2022.854592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cardio-oncology, a nascent specialty, has evolved as a concerted strategy to address the cardiovascular complications of cancer therapies. On the other hand, emerging evidence has shown that some anti-tumor drugs, such as CD20-targeted rotuximab, also have markedly cardioprotective effects in addition to treating cancers. Rituximab is a CD20-targeted monoclonal antibody and kill tumor B-cells through antibody-mediated and antibody-independent pathways, indicating that B cells participate and promote the progression of cardiovascular diseases. In this review, we mainly present the evidence that B cells contribute to the development of hypertrophy, inflammation, and maladaptive tissue remodeling, with the aim of proposing novel immunomodulatory therapeutic strategies targeting B cells and their products for the treatment of heart failure.
Collapse
Affiliation(s)
- Xinxin Zhang
- Heart Failure and Structural Cardiology Division, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuxi Sun
- Heart Failure and Structural Cardiology Division, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ning Wang
- Heart Failure and Structural Cardiology Division, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanli Zhang
- Heart Failure and Structural Cardiology Division, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Heart Failure and Structural Cardiology Division, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Heart Failure and Structural Cardiology Division, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Abstract
B cells are traditionally known for their ability to produce antibodies in the context of adaptive immune responses. However, over the last decade B cells have been increasingly recognized as modulators of both adaptive and innate immune responses, as well as players in an important role in the pathogenesis of a variety of human diseases. Here, after briefly summarizing our current understanding of B cell biology, we present a systematic review of the literature from both animal models and human studies that highlight the important role that B lymphocytes play in cardiac and vascular disease. While many aspects of B cell biology in the vasculature and, to an even greater extent, in the heart remain unclear, B cells are emerging as key regulators of cardiovascular adaptation to injury.
Collapse
Affiliation(s)
- Luigi Adamo
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA; , ,
| | - Cibele Rocha-Resende
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA; , ,
| | - Douglas L Mann
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA; , ,
| |
Collapse
|
11
|
Deroissart J, Porsch F, Koller T, Binder CJ. Anti-inflammatory and Immunomodulatory Therapies in Atherosclerosis. Handb Exp Pharmacol 2021; 270:359-404. [PMID: 34251531 DOI: 10.1007/164_2021_505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypercholesterolemia is a major risk factor in atherosclerosis development and lipid-lowering drugs (i.e., statins) remain the treatment of choice. Despite effective reduction of LDL cholesterol in patients, a residual cardiovascular risk persists in some individuals, highlighting the need for further therapeutic intervention. Recently, the CANTOS trial paved the way toward the development of specific therapies targeting inflammation, a key feature in atherosclerosis progression. The pre-existence of multiple drugs modulating both innate and adaptive immune responses has significantly accelerated the number of translational studies applying these drugs to atherosclerosis. Additional preclinical research has led to the discovery of new therapeutic targets, offering promising perspectives for the treatment and prevention of atherosclerosis. Currently, both drugs with selective targeting and broad unspecific anti-inflammatory effects have been tested. In this chapter, we aim to give an overview of current advances in immunomodulatory treatment approaches for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Castillo EC, Vázquez-Garza E, Yee-Trejo D, García-Rivas G, Torre-Amione G. What Is the Role of the Inflammation in the Pathogenesis of Heart Failure? Curr Cardiol Rep 2020; 22:139. [PMID: 32910299 PMCID: PMC7481763 DOI: 10.1007/s11886-020-01382-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW In heart failure, whether it is associated with reduced or preserved ejection fraction, the immune system is activated and contributes to heart remodeling and impaired function. RECENT FINDINGS Studies indicate that cells of the immune system not only play a role in the pathology but are also critical regulators of heart function. Knowledge about the role of the immune system driving heart failure will lead to the development of new targets to this system, particularly in those patients that, despite the apparent wellness, relapse and worsen. In this review, we will address the diverse mechanisms that trigger inflammation and their impact on heart failure progression.
Collapse
Affiliation(s)
- Elena C. Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
| | - Eduardo Vázquez-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
| | - David Yee-Trejo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
- Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, 66278 San Pedro Garza García, NL Mexico
- Tecnologico de Monterrey, Centro de Medicina Funcional, Hospital Zambrano Hellion, TecSalud, 66278 San Pedro Garzar García, NL Mexico
| | - Guillermo Torre-Amione
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
- Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, 66278 San Pedro Garza García, NL Mexico
- De Bakey CRC, The Methodist Hospital, Cornell University, Houston, TX USA
| |
Collapse
|
13
|
García-Rivas G, Castillo EC, Gonzalez-Gil AM, Maravillas-Montero JL, Brunck M, Torres-Quintanilla A, Elizondo-Montemayor L, Torre-Amione G. The role of B cells in heart failure and implications for future immunomodulatory treatment strategies. ESC Heart Fail 2020; 7:1387-1399. [PMID: 32533765 PMCID: PMC7373901 DOI: 10.1002/ehf2.12744] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Despite numerous demonstrations that the immune system is activated in heart failure, negatively affecting patients' outcomes, no definitive treatment strategy exists directed to modulate the immune system. In this review, we present the evidence that B cells contribute to the development of hypertrophy, inflammation, and maladaptive tissue remodelling. B cells produce antibodies that interfere with cardiomyocyte function, which culminates as the result of recruitment and activation of a variety of innate and structural cell populations, including neutrophils, macrophages, fibroblasts, and T cells. As B cells appear as active players in heart failure, we propose here novel immunomodulatory therapeutic strategies that target B cells and their products.
Collapse
Affiliation(s)
- Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico.,Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, Nuevo León, Mexico
| | - Elena Cristina Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico
| | - Adrian M Gonzalez-Gil
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Marion Brunck
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Nuevo León, Mexico
| | - Alejandro Torres-Quintanilla
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico.,Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, Nuevo León, Mexico
| | - Guillermo Torre-Amione
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico.,Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, Nuevo León, Mexico.,Weill Cornell Medical College, Methodist DeBakey Heart & Vascular Center, The Methodist Hospital, Houston, TX, USA
| |
Collapse
|
14
|
Hsieh MJ, Lee CH, Tsai ML, Kao CF, Lan WC, Huang YT, Tseng WY, Wen MS, Chang SH. Biologic Agents Reduce Cardiovascular Events in Rheumatoid Arthritis Not Responsive to Tumour Necrosis Factor Inhibitors: A National Cohort Study. Can J Cardiol 2020; 36:1739-1746. [PMID: 32603700 DOI: 10.1016/j.cjca.2020.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tumour necrosis factor inhibitors (TNFis) improve joints outcomes and reduce cardiovascular (CV) risk in patients with rheumatoid arthritis (RA). However, 20%-45% of RA patients are TNFi poor responders and have a significantly higher risk of CV events. In these TNFi nonresponders, the use of second-line biologic agents to improve synovial outcomes is supported by clinical trials and real-world experience. However, it remains unknown what kind of immune-mediated agent has the best CV prevention effect in this high-risk population. METHODS A nationwide RA cohort obtained from Taiwan's National Health Insurance claims database was constructed. RA patients first treated with TNFis who then received either rituximab, tocilizumab, or abatacept were enrolled and followed for 2 years. RESULTS A total of 89,973 RA patients were screened and 1,584 patients ultimately included. The incidences of major adverse cardiac events (MACE) at 2 years in the rituximab, tocilizumab, and abatacept groups were 7.17%, 2.75% and 2.38%, respectively. Multivariate adjusted Cox analysis showed that tocilizumab had significantly lower risk than rituximab in myocardial infarction (hazard ratio [HR] 0.12, 95% confidence interval [CI] 0.02-0.56; P = 0.008), and MACE (HR 0.41, 95% CI 0.23-0.72; P = 0.002). In addition, abatacept also had significant lower adjusted risk than rituximab in stroke (HR 0.18, 95% CI 0.05-0.64; P = 0.008), heart failure (HR 0.20, 95% CI 0.05-0.83; P = 0.027), and MACE (HR 0.25, 95% CI 0.11-0.55; P < 0.001) in multivariate analysis. CONCLUSIONS TNFi-nonresponder patients with RA who received second-line tocilizumab or abatacept had more benefit on CV events prevention compared with those who received rituximab.
Collapse
Affiliation(s)
- Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Lung Tsai
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chang-Fu Kao
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Ching Lan
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yu-Tung Huang
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Wen-Yi Tseng
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung Branch, Taiwan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Graduate Institute of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|