1
|
Abad-Santos F, Aliño SF, Borobia AM, García-Martín E, Gassó P, Maroñas O, Agúndez JAG. Developments in pharmacogenetics, pharmacogenomics, and personalized medicine. Pharmacol Res 2024; 200:107061. [PMID: 38199278 DOI: 10.1016/j.phrs.2024.107061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
The development of Pharmacogenetics and Pharmacogenomics in Western Europe is highly relevant in the worldwide scenario. Despite the usually low institutional support, many research groups, composed of basic and clinical researchers, have been actively working for decades in this field. Their contributions made an international impact and paved the way for further studies and pharmacogenomics implementation in clinical practice. In this manuscript, that makes part of the Special Issue entitled Spanish Pharmacology, we present an analysis of the state of the art of Pharmacogenetics and Pharmacogenomics research in Europe, we compare it with the developments in Spain, and we summarize the most salient contributions since 1988 to the present, as well as recent developments in the clinical application of pharmacogenomics knowledge. Finally, we present some considerations on how we could improve translation to clinical practice in this specific scenario.
Collapse
Affiliation(s)
- Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), CIBEREHD, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.
| | - Salvador F Aliño
- Gene Therapy and Pharmacogenomics Group, Department of Pharmacology, Faculty of Medicine, Universitat de València, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, School of Medicine, Universidad Autónoma de Madrid (UAM), IdiPAZ, Madrid, Spain
| | - Elena García-Martín
- Department of Pharmacology, Universidad de Extremadura, Avda de la Universidad s/n, 10071 Cáceres, Spain
| | - Patricia Gassó
- Basic Clinical Practice Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona Clínic Schizophrenia Unit (BCSU), IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Olalla Maroñas
- Public Foundation of Genomic Medicine, Santiago University Hospital, Genomic Medicine group, Pharmacogenetics and Drug Discovery (GenDeM), CIBERER, Santiago Health Research Institute (IDIS), Galicia, Spain
| | - José A G Agúndez
- Universidad de Extremadura. University Institute of Molecular Pathology Biomarkers, Avda de las Ciencias s/n, 10071 Cáceres, Spain.
| |
Collapse
|
2
|
Zhang F, Wu R, Liu Y, Dai S, Xue X, Gong X, Li Y. Comparative Pharmacokinetic Study of Rhubarb Anthraquinones in Normal and Nonalcoholic Fatty Liver Disease Rats. Eur J Drug Metab Pharmacokinet 2024; 49:111-121. [PMID: 38112917 DOI: 10.1007/s13318-023-00875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND AND OBJECTIVES Rhubarb anthraquinones contain five main components, that is, rhein, emodin, aloe-emodin, chrysophanol, and physcion, which demonstrate good therapeutic effects on nonalcoholic fatty liver disease (NAFLD). However, research on its pharmacokinetics in NAFLD remains lacking. This study aimed to investigate the pharmacokinetic differences of rhubarb anthraquinones in normal and NAFLD rats. METHODS This study developed an NAFLD rat model by high-fat diet feeding for 6 weeks. Normal and NAFLD groups were orally administered different rhubarb anthraquinones doses (37.5, 75, and 150 mg/kg). The concentration of the rhein, emodin, aloe-emodin, chrysophanol, and physcion in plasma was determined by high-performance liquid chromatography-ultraviolet. RESULTS The results revealed significant differences in pharmacokinetic behavior between normal and NAFLD rats. Compared with normal rats, NAFLD rats demonstrated significantly increased maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC0 → ∞) of rhubarb anthraquinones (P < 0.05), as well as significantly prolonged time to reach maximum plasma concentration (Tmax), terminal elimination half-life (t1/2), and mean residence time (MRT) of rhubarb anthraquinones (P < 0.05). CONCLUSIONS This study indicates significant differences in the pharmacokinetics of rhubarb anthraquinones between the physiological and NAFLD states of rats. Rhubarb anthraquinone demonstrated a longer retention time and slower absorption rate in NAFLD rats and exhibited higher bioavailability and peak concentration. This finding provides important information for guiding the clinical use of rhubarb anthraquinones under pathological conditions.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Xiaohong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
3
|
Stewart S, Dodero-Anillo JM, Guijarro-Eguinoa J, Arias P, Gómez López De Las Huertas A, Seco-Meseguer E, García-García I, Ramírez García E, Rodríguez-Antolín C, Carcas AJ, Rodriguez-Novoa S, Rosas-Alonso R, Borobia AM. Advancing pharmacogenetic testing in a tertiary hospital: a retrospective analysis after 10 years of activity. Front Pharmacol 2023; 14:1292416. [PMID: 37927587 PMCID: PMC10622662 DOI: 10.3389/fphar.2023.1292416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
The field of pharmacogenetics (PGx) holds great promise in advancing personalized medicine by adapting treatments based on individual genetic profiles. Despite its benefits, there are still economic, ethical and institutional barriers that hinder its implementation in our healthcare environment. A retrospective analysis approach of anonymized data sourced from electronic health records was performed, encompassing a diverse patient population and evaluating key parameters such as prescribing patterns and test results, to assess the impact of pharmacogenetic testing. A head-to-head comparison with previously published activity results within the same pharmacogenetic laboratory was also conducted to contrast the progress made after 10 years. The analysis revealed significant utilization of pharmacogenetic testing in daily clinical practice, with 1,145 pharmacogenetic tests performed over a 1-year period and showing a 35% growth rate increase over time. Of the 17 different medical departments that sought PGx tests, the Oncology department accounted for the highest number, representing 58.47% of all genotyped patients. A total of 1,000 PGx tests were requested for individuals susceptible to receive a dose modification based on genotype, and 76 individuals received a genotype-guided dose adjustment. This study presents a comprehensive descriptive analysis of real-world data obtained from a public tertiary hospital laboratory specialized in pharmacogenetic testing, and presents data that strongly endorse the integration of pharmacogenetic testing into everyday clinical practice.
Collapse
Affiliation(s)
- Stefan Stewart
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | | | | | - Pedro Arias
- Pharmacogenetics Laboratory, Genetics Department, La Paz University Hospital, Madrid, Spain
| | | | | | - Irene García-García
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Elena Ramírez García
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Pharmacology Department, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Rodríguez-Antolín
- Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research—IdiPAZ, Madrid, Spain
| | - Antonio J. Carcas
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Pharmacology Department, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sonia Rodriguez-Novoa
- Genetics of Metabolic Diseases Laboratory, Genetics Department, La Paz University Hospital, Madrid, Spain
| | - Rocio Rosas-Alonso
- Pharmacogenetics Laboratory, Genetics Department, La Paz University Hospital, Madrid, Spain
- Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research—IdiPAZ, Madrid, Spain
| | - Alberto M. Borobia
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Pharmacology Department, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Zhang K, Lu Z, Wang Q, Liu F, Wang M, Lin C, Zhu C. Pharmacokinetic Study of Four Major Bioactive Components of Liandan Xiaoyan Formula in Ulcerative Colitis and Control Rats Using UPLC-MS/MS. Front Pharmacol 2022; 13:936846. [PMID: 35860031 PMCID: PMC9289130 DOI: 10.3389/fphar.2022.936846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Liandan Xiaoyan Formula (LXF), a classic Traditional Chinese medicine (TCM) formula, is composed of two Chinese herbal medicines for treating bowel disease under the TCM theory. This study aimed to develop a rapid, stable, sensitive, and reliable method based on ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to simultaneously determine four major bioactive components of LXF (andrographolide, dehydroandrographolide, 1-methoxicabony-β-carboline, 4-methoxy-5-hydroxy-canthin-6-one) in rat serum and evaluate the pharmacokinetic characteristics of LXF in ulcerative colitis (UC) and control rats. After pretreating by protein precipitation with methanol, separation was performed on a UPLC C18 column using gradient elution with a mobile phase consisting of acetonitrile and 0.1% formic acid at a flowing rate of 0.4 ml/min. Detection was performed on Triple-TOF™ 5600 mass spectrometry set at the positive ionization and multiple reaction monitoring (MRM) mode. The validated method showed good linearity (R2 ≥ 0.9970), the intra- and inter-day accuracy were within ±11.58%, whereas the intra- and inter-day precision were less than 13.79%. This method was validated and applied to compare the pharmacokinetic profiles of the analytes in serum of UC induced by dextran sulphate sodium (DSS) and control rats after oral administration of LXF. The results showed that four major bioactive components of LXF were quickly absorbed after oral administration in both groups, with higher exposure levels in the UC group. This relationship between the active ingredients’ pharmacokinetic properties provided essential scientific information for applying LXF in clinical.
Collapse
Affiliation(s)
- Kaihui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zenghui Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangle Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Meiqi Wang, ; Chaozhan Lin, ; Chenchen Zhu,
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Meiqi Wang, ; Chaozhan Lin, ; Chenchen Zhu,
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Meiqi Wang, ; Chaozhan Lin, ; Chenchen Zhu,
| |
Collapse
|
5
|
García-García I, Dapía I, Montserrat J, Martinez de Soto L, Bueno D, Díaz L, Queiruga J, Rodriguez Mariblanca A, Guerra-García P, Ramirez E, Frías J, Pérez Martínez A, Carcas-Sansuan AJ, Borobia AM. Experience of a Strategy Including CYP2C19 Preemptive Genotyping Followed by Therapeutic Drug Monitoring of Voriconazole in Patients Undergoing Allogenic Hematopoietic Stem Cell Transplantation. Front Pharmacol 2021; 12:717932. [PMID: 34744712 PMCID: PMC8563584 DOI: 10.3389/fphar.2021.717932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/08/2021] [Indexed: 12/04/2022] Open
Abstract
Many factors have been described to contribute to voriconazole (VCZ) interpatient variability in plasma concentrations, especially CYP2C19 genetic variability. In 2014, Hicks et al. presented data describing the correlation between VCZ plasma concentrations and CYP2C19 diplotypes in immunocompromised pediatric patients and utilized pharmacokinetic modeling to extrapolate a more suitable VCZ dose for each CYP2C19 diplotype. In 2017, in our hospital, a clinical protocol was developed for individualization of VCZ in immunocompromised patients based on preemptive genotyping of CYP2C19 and dosing proposed by Hicks et al., Clinical Pharmacogenetics Implementation Consortium (CPIC) clinical guidelines, and routine therapeutic drug monitoring (TDM). We made a retrospective review of a cohort of 28 immunocompromised pediatric patients receiving VCZ according to our protocol. CYP2C19 gene molecular analysis was preemptively performed using PharmArray®. Plasma trough concentrations were measured by immunoassay analysis until target concentrations (1–5.5 μg/ml) were reached. Sixteen patients (57.14%) achieved VCZ trough target concentrations in the first measure after the initial dose based on PGx. This figure is similar to estimations made by Hicks et al. in their simulation (60%). Subdividing by phenotype, our genotyping and TDM-combined strategy allow us to achieve target concentrations during treatment/prophylaxis in 90% of the CYP2C19 Normal Metabolizers (NM)/Intermediate Metabolizers (IM) and 100% of the Rapid Metabolizers (RM) and Ultrarapid Metabolizers (UM) of our cohort. We recommended modifications of the initial dose in 29% (n = 8) of the patients. In RM ≥12 years old, an increase of the initial dose resulted in 50% of these patients achieving target concentrations in the first measure after initial dose adjustment based only on PGx information. Our experience highlights the need to improve VCZ dose predictions in children and the potential of preemptive genotyping and TDM to this aim. We are conducting a multicenter, randomized clinical trial in patients with risk of aspergillosis in order to evaluate the effectiveness and efficiency of VCZ individualization: VORIGENIPHARM (EudraCT: 2019-000376-41).
Collapse
Affiliation(s)
- Irene García-García
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Irene Dapía
- Medical and Molecular Genetics Institute (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Jaime Montserrat
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Lucía Martinez de Soto
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - David Bueno
- Paediatric Haemato-oncology Department, University Hospital La Paz, Madrid, Spain
| | - Lucía Díaz
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Javier Queiruga
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Amelia Rodriguez Mariblanca
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Pilar Guerra-García
- Paediatric Haemato-oncology Department, University Hospital La Paz, Madrid, Spain
| | - Elena Ramirez
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain.,Medical and Molecular Genetics Institute (INGEMM), La Paz University Hospital, Madrid, Spain.,Paediatric Haemato-oncology Department, University Hospital La Paz, Madrid, Spain
| | - Jesus Frías
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | | | - Antonio J Carcas-Sansuan
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|