1
|
Katsaras M, Sotiropoulou V, Manali E, Fouka E, Papakosta D, Bendstrup E, Kolilekas L, Tomos I, Tzilas V, Ntolios P, Steiropoulos P, Papanikolaou I, Gogali A, Kostikas K, Tsiri P, Papaioannou O, Malakounidou E, Theohari E, Christopoulos I, Sampsonas F, Papiris SA, Rovina N, Bouros D, Tzouvelekis A. Complete Blood Cell Count Parameters Predict Mortality in Patients with Hypersensitivity Pneumonitis. Diagnostics (Basel) 2025; 15:1038. [PMID: 40310410 PMCID: PMC12025666 DOI: 10.3390/diagnostics15081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Hypersensitivity pneumonitis (HP) represents a chronic lung disease with an unpredictable clinical course. There is a pressing need for clinically applicable prognostic biomarkers in patients with HP. Methods: This was an observational, retrospective study. We investigated the prognostic potential of complete blood count parameters in treatment-naïve patients diagnosed with HP between 15 December 2010 and 1 October 2023. Receiver operating characteristic (ROC) curve analysis identified the optimal cut-off thresholds for each parameter in terms of mortality prediction. Results: We included 129 patients diagnosed with HP [median age: 68.0 years (95% CI: 65.0 to 69.0), fibrotic HP: n = 85, 65.9%]. Patients with HP and an eosinophil count > 160 cells/μL [ROC curve, area under curve (AUC): 0.61] exhibited increased mortality risk compared to patients with HP and an eosinophil count ≤ 160 cells/μL [Kaplan-Meier, HR: 2.95 (95% CI: 1.36 to 6.42), p = 0.006]. Patients with HP and a monocyte count > 350 cells/μL (ROC curve, AUC: 0.52) had worse survival compared to patients with HP and a monocyte count lower than this threshold [Kaplan-Meier, HR: 2.48 (95% CI: 1.03 to 5.09), p = 0.04]. Patients with HP and an eosinophil-lymphocyte ratio (ELR) > 0.09 (ROC curve, AUC: 0.64) had a higher risk of mortality compared to patients with HP and ELR ≤ 0.09 [Kaplan-Meier, HR: 2.75 (95% CI: 1.3 to 5.78), p = 0.008]. Conclusions: This study demonstrated that eosinophil count, monocyte count, and ELR could be prognostic biomarkers in patients with HP. Further studies aiming to validate the prognostic potential of complete blood count parameters in patients with HP are greatly anticipated.
Collapse
Affiliation(s)
- Matthaios Katsaras
- Department of Respiratory Medicine, University Hospital of Patras, 26500 Patras, Greece; (M.K.); (A.T.)
- 1st Respiratory Department, Sotiria Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasilina Sotiropoulou
- Department of Respiratory Medicine, University Hospital of Patras, 26500 Patras, Greece; (M.K.); (A.T.)
| | - Effrosyni Manali
- 2nd Pulmonary Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelia Fouka
- Pulmonary Department, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Despoina Papakosta
- Pulmonary Department, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Elisabeth Bendstrup
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Lykourgos Kolilekas
- 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Ioannis Tomos
- 2nd Pulmonary Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
- 5th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Vasilios Tzilas
- 1st Respiratory Department, Sotiria Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- 2nd Pulmonary Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Paschalis Ntolios
- Department of Respiratory Medicine, Medical School, University General Hospital Dragana, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, University General Hospital Dragana, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Athena Gogali
- Department of Respiratory Medicine, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Kostikas
- Department of Respiratory Medicine, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiota Tsiri
- Department of Respiratory Medicine, University Hospital of Patras, 26500 Patras, Greece; (M.K.); (A.T.)
| | - Ourania Papaioannou
- Department of Respiratory Medicine, University Hospital of Patras, 26500 Patras, Greece; (M.K.); (A.T.)
| | - Elli Malakounidou
- Department of Respiratory Medicine, University Hospital of Patras, 26500 Patras, Greece; (M.K.); (A.T.)
| | - Eva Theohari
- Department of Respiratory Medicine, University Hospital of Patras, 26500 Patras, Greece; (M.K.); (A.T.)
| | - Ioannis Christopoulos
- Department of Respiratory Medicine, University Hospital of Patras, 26500 Patras, Greece; (M.K.); (A.T.)
| | - Fotios Sampsonas
- Department of Respiratory Medicine, University Hospital of Patras, 26500 Patras, Greece; (M.K.); (A.T.)
| | - Spyridon A. Papiris
- 2nd Pulmonary Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikoletta Rovina
- 1st Respiratory Department, Sotiria Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Demosthenes Bouros
- 1st Respiratory Department, Sotiria Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, 26500 Patras, Greece; (M.K.); (A.T.)
| |
Collapse
|
2
|
Crowley LE, Stockley RA, Thickett DR, Dosanjh D, Scott A, Parekh D. Neutrophil dynamics in pulmonary fibrosis: pathophysiological and therapeutic perspectives. Eur Respir Rev 2024; 33:240139. [PMID: 39603661 PMCID: PMC11600124 DOI: 10.1183/16000617.0139-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 11/29/2024] Open
Abstract
The shared pathobiological mechanisms driving progressive fibrosis in interstitial lung diseases (ILDs) remain unclear. Neutrophils, the most common immune cells in the human body, contain an extensive array of proteinases that are important for cell function, including tissue repair and remodelling. Increasing observational studies have reported elevated neutrophil counts in the respiratory tract and circulation of patients with ILD and suggest a role as a biomarker of disease severity. Neutrophils and their contents (including the formation of neutrophil extracellular traps (NETs)) are present in fibrotic lung tissue. Proteinases and NETs may drive fibrogenesis in animal and in vitro models and may impact transforming growth factor-β1 activation. However, the effect of neutrophil action, whether reparative or pathologically destructive to the delicate lung architecture, has yet to be determined. This review aims to summarise the current literature surrounding the potential role of the neutrophil as a biomarker and contributor to the pathogenesis of ILD. There is currently a paucity of treatment options in ILD driven by the knowledge gap underlying the overall disease mechanisms. This review concludes that neutrophils warrant further evaluation as manipulation of recruitment and function could provide a novel and much needed therapeutic strategy.
Collapse
Affiliation(s)
- Louise Elizabeth Crowley
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
- Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Robert Andrew Stockley
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
| | - David Richard Thickett
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
- Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Davinder Dosanjh
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
| | - Aaron Scott
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Joint senior authors
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
- Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Joint senior authors
| |
Collapse
|
3
|
Janho dit Hreich S, Juhel T, Leroy S, Ghinet A, Brau F, Hofman V, Hofman P, Vouret-Craviari V. Activation of the P2RX7/IL-18 pathway in immune cells attenuates lung fibrosis. eLife 2024; 12:RP88138. [PMID: 38300690 PMCID: PMC10945561 DOI: 10.7554/elife.88138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease associated with progressive and irreversible deterioration of respiratory functions that lacks curative therapies. Despite IPF being associated with a dysregulated immune response, current antifibrotics aim only at limiting fibroproliferation. Transcriptomic analyses show that the P2RX7/IL18/IFNG axis is downregulated in IPF patients and that P2RX7 has immunoregulatory functions. Using our positive modulator of P2RX7, we show that activation of the P2RX7/IL-18 axis in immune cells limits lung fibrosis progression in a mouse model by favoring an antifibrotic immune environment, with notably an enhanced IL-18-dependent IFN-γ production by lung T cells leading to a decreased production of IL-17 and TGFβ. Overall, we show the ability of the immune system to limit lung fibrosis progression by targeting the immunomodulator P2RX7. Hence, treatment with a small activator of P2RX7 may represent a promising strategy to help patients with lung fibrosis.
Collapse
Affiliation(s)
| | - Thierry Juhel
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Sylvie Leroy
- FHU OncoAgeNiceFrance
- Université Côte d'Azur, CNRS, Institut Pharmacologie Moléculaire et CellulaireSophia-AntipolisFrance
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Pneumology DepartmentNiceFrance
| | - Alina Ghinet
- Inserm U995, LIRIC, Université de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place VerdunLilleFrance
- Hautes Etudes d’Ingénieur (HEI), JUNIA Hauts-de-France, UCLille, Laboratoire de chimie durable et santéLilleFrance
- ‘Al. I. Cuza’ University of Iasi, Faculty of ChemistryIasiRomania
| | - Frederic Brau
- Université Côte d'Azur, CNRS, Institut Pharmacologie Moléculaire et CellulaireSophia-AntipolisFrance
| | - Veronique Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
- FHU OncoAgeNiceFrance
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur HospitalNiceFrance
- Hospital-Related Biobank (BB-0033-00025), Pasteur HospitalNiceFrance
| | - Paul Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
- FHU OncoAgeNiceFrance
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur HospitalNiceFrance
- Hospital-Related Biobank (BB-0033-00025), Pasteur HospitalNiceFrance
| | | |
Collapse
|
4
|
Achaiah A, Fraser E, Saunders P, Hoyles RK, Benamore R, Ho LP. Neutrophil levels correlate with quantitative extent and progression of fibrosis in IPF: results of a single-centre cohort study. BMJ Open Respir Res 2023; 10:e001801. [PMID: 37816551 PMCID: PMC10565140 DOI: 10.1136/bmjresp-2023-001801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with poor prognosis. Clinical studies have demonstrated association between different blood leucocytes and mortality and forced vital capacity (FVC) decline. Here, we question which blood leucocyte levels are specifically associated with progression of fibrosis, measured by accumulation of fibrosis on CT scan using a standardised automated method. METHODS Using the Computer-Aided Lung Informatics for Pathology Evaluation and Rating CT algorithm, we determined the correlation between different blood leucocytes (<4 months from CT) and total lung fibrosis (TLF) scores, pulmonary vessel volume (PVV), FVC% and transfer factor of lung for carbon monoxide% at baseline (n=171) and with progression of fibrosis (n=71), the latter using multivariate Cox regression. RESULTS Neutrophils (but not monocyte or lymphocytes) correlated with extent of lung fibrosis (TLF/litre) (r=0.208, p=0.007), PVV (r=0.259, p=0.001), FVC% (r=-0.127, p=0.029) at baseline. For the 71 cases with repeat CT; median interval between CTs was 25.9 (16.8-39.9) months. Neutrophil but not monocyte levels are associated with increase in TLF/litre (HR 2.66, 95% CI 1.35 to 5.25, p=0.005). CONCLUSION Our study shows that neutrophil rather than monocyte levels correlated with quantifiable increase in fibrosis on imaging of the lungs in IPF, suggesting its relative greater contribution to progression of fibrosis in IPF.
Collapse
Affiliation(s)
- Andrew Achaiah
- Translational Immunology Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Emily Fraser
- Oxford Interstitial Lung Disease Service, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Peter Saunders
- Oxford Interstitial Lung Disease Service, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rachel K Hoyles
- Oxford Interstitial Lung Disease Service, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rachel Benamore
- Thoracic Radiology Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ling-Pei Ho
- Translational Immunology Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford Interstitial Lung Disease Service, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
5
|
Min B, Grant-Orser A, Johannson KA. Peripheral blood monocyte count and outcomes in patients with interstitial lung disease: a systematic review and meta-analysis. Eur Respir Rev 2023; 32:230072. [PMID: 37673424 PMCID: PMC10481330 DOI: 10.1183/16000617.0072-2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Peripheral blood monocyte counts have been associated with poor outcomes in interstitial lung disease (ILD). However, studies are limited by variable biomarker thresholds, analytic approaches and heterogenous populations. This systematic review and meta-analysis characterised the relationship between monocytes and clinical outcomes in ILD. METHODS Electronic database searches were performed. Two reviewers screened abstracts and extracted data. Pooled estimates (hazard ratios (HRs)) of monocyte count thresholds were calculated for their association with mortality using ≥0.6×109 and >0.9×109 cells·L-1 for unadjusted models and ≥0.95×109 cells·L-1 for adjusted models, using random effects, with heterogeneity and bias assessed. Disease progression associated with monocytes >0.9×109cells·L-1 was also calculated. RESULTS Of 3279 abstracts, 13 were included in the systematic review and eight in the meta-analysis. The pooled unadjusted HR for mortality for monocyte counts ≥0.6×109 cells·L-1 was 1.71 (95% CI 1.34-2.19, p<0.001, I2=0%) and for monocyte counts >0.90×109 cells·L-1 it was 2.44 (95% CI 1.53-3.87, p=0.0002, I2=52%). The pooled adjusted HR for mortality for monocyte counts ≥0.95×109 cells·L-1 was 1.93 (95% CI 1.24-3.01, p=0.0038 I2=69%). The pooled HR for disease progression associated with increased monocyte counts was 1.83 (95% CI 1.40-2.39, p<0.0001, I2=28%). CONCLUSIONS Peripheral blood monocyte counts were associated with an increased risk of mortality and disease progression in patients with ILD.
Collapse
Affiliation(s)
- Bohyung Min
- Department of Medicine, Division of Respirology, University of Calgary, Calgary, AB, Canada
| | - Amanda Grant-Orser
- Department of Medicine, Division of Respirology, University of Calgary, Calgary, AB, Canada
| | - Kerri A Johannson
- Department of Medicine, Division of Respirology, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Shchepikhin EI, Shmelev EI, Ergeshov AE, Zaytseva AS, Shergina EA, Adamovskaya E. Possibilities of non-invasive diagnosis of fibrotic phenotype of interstitial lung diseases. TERAPEVT ARKH 2023; 95:230-235. [PMID: 37167144 DOI: 10.26442/00403660.2023.03.202073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
Progressive pulmonary fibrosis is a major problem in respiratory medicine. Currently, there are no reliable biomarkers for early diagnosis of progressive pulmonary fibrosis, which leads to delayed diagnosis. AIM To determine the role of serum biomarkers CA-19-9 and CA-125 and the possibilities of capillaroscopy of the nail fold in the diagnosis of progressive pulmonary fibrosis. MATERIALS AND METHODS The study included 43 patients with interstitial changes in the lungs. Based on the presence/absence of signs of progression over the previous 12 months, patients were divided into 2 groups. All patients underwent forced spirometry, body plethysmography, diffusion test, CT, lung ultrasound, capillaroscopy of the nail fold, study of serum concentrations of CA-19-9 and CA-125. RESULTS In the group of patients with a progressive fibrotic phenotype of Interstitial lung diseases, a greater severity of capillaroscopic changes and a higher level of CA-19-9 were revealed. Correlation of these parameters with changes according to CT scan data (Warrick test) and lung ultrasound was shown. CONCLUSION The data obtained demonstrate the possibilities of non-invasive diagnosis of progressive fibrosing interstitial lung diseases and require further research and prospective follow-up to assess the diagnostic and prognostic role of the studied biomarkers, as well as to determine their place in clinical practice.
Collapse
|
7
|
Sangani RG, Deepak V, Anwar J, Patel Z, Ghio AJ. Cigarette Smoking, and Blood Monocyte Count Correlate with Chronic Lung Injuries and Mortality. Int J Chron Obstruct Pulmon Dis 2023; 18:431-446. [PMID: 37034898 PMCID: PMC10076620 DOI: 10.2147/copd.s397667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
Background Cigarette smoking (CS)-related monocytosis contributes to the development of chronic lung injuries via complex mechanisms. We aim to determine correlations between measures of CS and monocytes, their capacities to predict chronic lung diseases, and their associations with mortality. Methods A single-center retrospective study of patients undergoing surgical resection for suspected lung nodules/masses was performed. CS was quantified as cigarettes smoked per day (CPD), duration of smoking, composite pack years (CPY), current smoking status, and smoking cessation years. A multivariate logistic regression analysis was performed. Results Of 382 eligible patients, 88% were ever smokers. In this group, 45% were current smokers with mean CPD of 27.2±40.0. CPY and duration of smoking showed positive linear correlations with percentage monocyte count. Physiologically, CPY was associated with progressive obstruction, hyperinflation, and reduced diffusion capacity (DLCO). Across the quartiles of smoking, there was an accumulation of radiologic and histologic abnormalities. Anthracosis and emphysema were associated with CPD, while lung cancer, respiratory bronchiolitis (RB), emphysema, and honeycombing were statistically related to duration of smoking. Analysis using consecutive CPY showed associations with lung cancer (≥10 and <30), fibrosis (≥20 and <40), RB (≥50), anthracosis and emphysema (≥10 and onwards). Percentage monocytes correlated with organizing pneumonia (OP), fibrosis, and emphysema. The greater CPY increased mortality across the groups. Significant predictors of mortality included percentage monocyte, anemia, GERD, and reduced DLCO. Conclusion Indices of CS and greater monocyte numbers were associated with endpoints of chronic lung disease suggesting a participation in pathogenesis. Application of these easily available metrics may support a chronology of CS-induced chronic lung injuries. While a relative lesser amount of smoking can be associated with lung cancer and fibrosis, greater CPY increases the risk for emphysema. Monocytosis predicted lung fibrosis and mortality. Duration of smoking may serve as a better marker of monocytosis and associated chronic lung diseases.
Collapse
Affiliation(s)
- Rahul G Sangani
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
- Correspondence: Rahul G Sangani, Section of Pulmonary, Critical Care, and Sleep Medicine, West Virginia University School of Medicine, 1 Medical Center Dr, PO BOX 9166, Morgantown, WV, 26506, USA, Tel +1 304 293-4661 option #2, Fax +1 304-293-3724, Email
| | - Vishal Deepak
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Javeria Anwar
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Zalak Patel
- Department of Radiology, West Virginia University, Morgantown, WV, USA
| | | |
Collapse
|
8
|
Zhang J, Zhang Y, Wang Z, Zhao J, Li Z, Wang K, Tian L, Yao B, Wu Q, Wang T, Wang J. Genes related to N6-methyladenosine in the diagnosis and prognosis of idiopathic pulmonary fibrosis. Front Genet 2023; 13:1102422. [PMID: 36685949 PMCID: PMC9846232 DOI: 10.3389/fgene.2022.1102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive pulmonary fibrotic disease with unknown etiology and poor outcomes. It severely affects the quality of life. In this study, we comprehensively analyzed the expression of N6-methyladenosine (m6A) RNA methylation regulators using gene expression data from various tissue sources in IPF patients and healthy volunteers. Methods: The gene expression matrix and clinical characteristics of IPF patients were retrieved from the Gene Expression Omnibus database. A random forest model was used to construct diagnosis signature m6A regulators. Regression analysis and correlation analysis were used to identify prognosis m6A regulators. Consensus cluster analysis was used to construct different m6A prognosis risk groups, then functional enrichment, immune infiltration and drug sensitivity analysis were performed. Result: Five candidate m6A genes from lung tissue were used to predict the incidence, and the incidence was validated using datasets from bronchoalveolar lavage fluid (BALF) and peripheral blood mononuclear cells. Subsequently, the BALF dataset containing outcomes data was used for the prognosis analysis of m6A regulators. METTL14, G3BP2, and ZC3H13 were independent protective factors. Using correlation analysis with lung function in the lung tissue-derived dataset, METTL14 was a protective factor in IPF. Based on METTL14 and G3BP2, a consensus cluster analysis was applied to distinguish the prognostic m6A regulation patterns. The low-risk group's prognosis was significantly better than the high-risk group. Biological processes regulated by various risk groups included fibrogenesis and cell adhesion. Analysis of immune cell infiltration showed upregulation of neutrophils in the m6A high-risk group. Subsequently, five m6A high-risk group sensitive drugs and one m6A low-risk group sensitive drug were identified. Discussion: These findings suggest that m6A regulators are involved in the diagnosis and prognosis of IPF, and m6A patterns are a method to identify IPF outcomes.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Zhang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziyuan Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiachao Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhenyu Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Keju Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Tian
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Baojin Yao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China,Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong University of Technology, Guangzhou, China,Zhuhai MUST Science and Technology Research Institute, Zhuhai, China,*Correspondence: Qibiao Wu, ; Tan Wang, ; Jing Wang,
| | - Tan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Qibiao Wu, ; Tan Wang, ; Jing Wang,
| | - Jing Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China,Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Qibiao Wu, ; Tan Wang, ; Jing Wang,
| |
Collapse
|
9
|
Jegal Y. The role of neutrophils in the pathogenesis of IPF. Korean J Intern Med 2022; 37:945-946. [PMID: 36068714 PMCID: PMC9449193 DOI: 10.3904/kjim.2022.267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Yangjin Jegal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
- Correspondence to Yangjin Jegal, M.D. Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, 877 Bangeojinsunhwan-doro, Dong-gu, Ulsan 44033, Korea Tel: +82-52-250-8827 Fax: +82-52-250-7048 E-mail:
| |
Collapse
|
10
|
Spagnolo P, Tonelli R, Samarelli AV, Castelli G, Cocconcelli E, Petrarulo S, Cerri S, Bernardinello N, Clini E, Saetta M, Balestro E. The role of immune response in the pathogenesis of idiopathic pulmonary fibrosis: far beyond the Th1/Th2 imbalance. Expert Opin Ther Targets 2022; 26:617-631. [PMID: 35983984 DOI: 10.1080/14728222.2022.2114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION . Idiopathic pulmonary fibrosis (IPF) is a chronic disease of unknown origin characterized by progressive scarring of the lung leading to irreversible loss of function. Despite the availability of two drugs that are able to slow down disease progression, IPF remains a deadly disease. The pathogenesis of IPF is poorly understood, but a dysregulated wound healing response following recurrent alveolar epithelial injury is thought to be crucial. Areas covered. In the last few years, the role of the immune system in IPF pathobiology has been reconsidered; indeed, recent data suggest that a dysfunctional immune system may promote and unfavorable interplay with pro-fibrotic pathways thus acting as a cofactor in disease development and progression. In this article, we review and critically discuss the role of T cells in the pathogenesis and progression of IPF in the attempt to highlight ways in which further research in this area may enable the development of targeted immunomodulatory therapies for this dreadful disease. EXPERT OPINION A better understanding of T cells interactions has the potential to facilitate the development of immune modulators targeting multiple T cell-mediated pathways thus halting disease initiation and progression.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gioele Castelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Cocconcelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Simone Petrarulo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marina Saetta
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Lo CY, Wang CH, Wang CW, Chen CJ, Huang HY, Chung FT, Huang YC, Lin CW, Lee CS, Lin CY, Lin CH, Chang PJ, Lin TY, Heh CC, He JR, Chung KF. Increased Interleukin-17 and Glucocorticoid Receptor-β Expression in Interstitial Lung Diseases and Corticosteroid Insensitivity. Front Immunol 2022; 13:905727. [PMID: 35865549 PMCID: PMC9294725 DOI: 10.3389/fimmu.2022.905727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
Background Treatment responsiveness to corticosteroids is excellent for cryptogenic organizing pneumonia (COP) and sarcoidosis, but suboptimal for idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia (UIP). We hypothesise that the differential expression of IL-17 contributes to variable corticosteroid sensitivity in different interstitial lung diseases. Objective To determine the associations among expression of IL-17, glucocorticoid receptor-β and responsiveness to corticosteroid treatment in interstitial lung diseases. Methods Immunohistochemical (IHC) staining was performed on formalin-fixed paraffin-embedded (FFPE) lung tissues obtained by bronchoscopic, CT-guided or surgical biopsies, and quantified by both cell counting (% positive cells) by individuals and by software IHC Profiler plugin of ImageJ (opacity density score). We studied the effect of IL-17 on corticosteroid sensitivity in human fibroblast MRC5 cell line. Results Compared with specimens from patients with COP (n =13) and sarcoidosis (n =13), those from IPF patients (n = 21) had greater GR-β and IL-17 expression and neutrophil infiltration. Radiographic progression after oral corticosteroid treatment was positively correlated with the expression in IL-17 and GR-β/GR-α ratio in all patients (COP, sarcoidosis and IPF) and also within the IPF subgroup only. IL-17 expression level was positively associated with GR-β and GR-β/GR-α ratio. In MRC5 cells, exogenous IL-17 increased the production of collagen I and up-regulated GR-β expression and dexamethasone’s suppressive effect on collagen I production was impaired by IL-17, and silencing IL-17 receptor A gene attenuated the effect of IL-17. Conclusion Up-regulation of GR-β/GR-α ratio by IL-17 could be associated with the relative corticosteroid-insensitivity of IPF.
Collapse
Affiliation(s)
- Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chun-Yu Lo, ;
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Wang
- Department of Pathology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hung-Yu Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Tsai Chung
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- New Taipei Municipal TuCheng Hospital (Managed by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Yu-Chen Huang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chang-Wei Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Shu Lee
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- New Taipei Municipal TuCheng Hospital (Managed by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Chun-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiung-Hung Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jui Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chen Heh
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jung-Ru He
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
12
|
Achaiah A, Lyon P, Fraser E, Saunders P, Hoyles R, Benamore R, Ho LP. Increased monocyte level is a risk factor for radiological progression in patients with early fibrotic interstitial lung abnormality. ERJ Open Res 2022; 8:00226-2022. [PMID: 35795307 PMCID: PMC9251369 DOI: 10.1183/23120541.00226-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022] Open
Abstract
Background Interstitial lung abnormalities (ILA) are specific spatial patterns on computed tomography (CT) scan potentially compatible with early interstitial lung disease. A proportion will progress; management involves risk stratification and surveillance. Elevated blood monocyte levels have been shown to associate with progression of idiopathic pulmonary fibrosis. The aims of the present study were: 1) to estimate the proportion of “early fibrotic” (EF)-ILAs (reticular±ground-glass opacities, excluding traction bronchiectasis and honeycombing) on CT scans of patients attending all-indications thoracic CTs, and proportion demonstrating radiological progression; and 2) to explore association between peripheral blood leukocyte levels and ILA progression. Methods We analysed all thoracic CT reports in individuals aged 45–75 years performed between January 2015 and December 2020 in one large teaching hospital (Oxford, UK) to identify patient CT reports consistent with EF-ILA. CT-contemporaneous blood leukocyte counts were examined to explore contribution to progression and all-cause mortality, using multivariate Cox regression. Results 40 711 patients underwent thoracic CT imaging during this period. 1259 (3.1%) demonstrated the EF-ILA pattern (mean±sd age 65.4±7.32 years; 735 (47.8%) male). EF-ILA was significantly associated with all-cause mortality (hazard ratio 1.87, 95% CI 1.25–2.78; p=0.002). 362 cases underwent at least one follow-on CT. Radiological progression was observed in 157 (43.4%) cases: increase in reticulation n=51, new traction bronchiectasis n=84, honeycombing n=22. Monocyte count, neutrophil count, monocyte:lymphocyte ratio, neutrophil:lymphocyte ratio and “systemic inflammatory response index” were significantly associated with radiological progression. Conclusion 3.1% of subjects requiring thoracic CT during a 6-year period demonstrated EF-ILA. Monocyte levels and blood leukocyte-derived indexes were associated with radiological progression and could indicate which patients may require closer follow-up. Monocyte levels are associated with radiological progression of early fibrotic ILA to established interstitial lung disease and could indicate which patients might require closer follow-uphttps://bit.ly/3LlS2ff
Collapse
|
13
|
Achaiah A, Rathnapala A, Pereira A, Bothwell H, Dwivedi K, Barker R, Iotchkova V, Benamore R, Hoyles RK, Ho LP. Neutrophil lymphocyte ratio as an indicator for disease progression in Idiopathic Pulmonary Fibrosis. BMJ Open Respir Res 2022; 9:9/1/e001202. [PMID: 35715193 PMCID: PMC9207910 DOI: 10.1136/bmjresp-2022-001202] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease. Patients present at different stages and disease course is varied. Blood monocytes have been linked to all-cause mortality, and neutrophils to progression to IPF in patients with the indeterminate for usual interstitial pneumonia CT pattern. OBJECTIVE To determine association between blood monocytes, neutrophils and lymphocytes levels (and their derived indexes), with lung function decline and mortality in IPF. METHODS We performed a retrospective analysis of an IPF cohort (n=128) who had their first clinical visit at the Oxford Interstitial Lung Disease Service between 2013 and 2017. Association between blood monocytes, neutrophils, lymphocytes and derived indexes (within 4 months of visit) and decline in forced vital capacity (FVC) and all-cause mortality were assessed using Cox proportional hazard regression analysis. Kaplan-Meier analysis was used to assess time-to-event for 10% FVC decline and mortality for patients dichotomised to high and low leucocyte counts. RESULTS Median length of follow-up was 31.0 months (IQR 16.2-42.4); 41.4% demonstrated FVC decline >10% per year and 43.8% died. In multivariate models (incorporating age, gender and initial FVC%), raised neutrophils, lymphopaenia and neutrophil:lymphocyte ratio were associated with FVC decline (p≤0.01); while both monocytes and neutrophil levels (and their derived indexes) were associated with all-cause mortality (p≤0.01). Kaplan-Meier analysis also showed association between neutrophils and its derived indexes but not monocyte, with FVC decline. CONCLUSION Blood neutrophil and lymphopaenia are more sensitive than monocytes as prognostic indicators of disease progression in those with established IPF.
Collapse
Affiliation(s)
- Andrew Achaiah
- MRC Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK.,Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Amila Rathnapala
- Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrea Pereira
- Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Harriet Bothwell
- Undergraduate Education, Great Western Hospitals NHS Foundation Trust, Swindon, UK
| | - Kritica Dwivedi
- Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rosie Barker
- Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Rachel Benamore
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rachel K Hoyles
- Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ling-Pei Ho
- MRC Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK .,Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, UK
| |
Collapse
|