1
|
Suh JW, Park SM, Ju YK, Yang KS, Kim JY, Kim SB, Sohn JW, Yoon YK. Clinical and molecular predictors of mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia: A retrospective cohort study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:148-155. [PMID: 38057202 DOI: 10.1016/j.jmii.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND/PURPOSE To investigate the virulence profiles and identify clinical and microbiological predictors of mortality in patients with carbapenem-resistant Acinetobacter baumannii (A. baumannii) bacteremia. METHODS This retrospective cohort study enrolled adult patients with carbapenem-resistant A. baumannii (CRAB). Multivariate logistic regression was used to identify the predictors of 30-day mortality. All isolates were subjected to real-time polymerase chain reaction for virulence factors and genotyped using multilocus sequence typing. RESULTS Among the 153 patients with CRAB bacteremia, 66 % received appropriate definitive antibiotic therapy. The in-hospital and 30-day mortality rates were 58.3 and 23.5 %, respectively. Ultimately, we enrolled 125 patients with CRAB bacteremia in the analysis, excluding early mortality cases. All CRAB isolates carried blaOXA-23 and blaOXA-51. The clinical strains belonged to 10 sequence types (STs), and the major genotypes were ST191, ST195, ST451, and ST784. The distribution of virulence factors included surface adhesion (Ata, 84.8 %; ChoP, 7.2 %), biofilm formation (OmpA, 76.8 %), killing of host cells (AbeD, 99.2 %), toxins (LipA, 99.2 %), and conjugation (BfmR, 90.4 %). In multivariate logistic regression analysis, hemodialysis due to acute kidney injury and moderate to severe thrombocytopenia were significant risk factors associated with 30-day mortality. However, microbiological factors were not significant predictors. CONCLUSIONS Clinical factors such as hemodialysis due to acute renal injury and moderate to severe thrombocytopenia have a greater influence on mortality in CRAB bacteremia compared with microbiological factors.
Collapse
Affiliation(s)
- Jin Woong Suh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung Min Park
- Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
| | - Yong Kuk Ju
- Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
| | - Kyung Sook Yang
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong Yeon Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sun Bean Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jang Wook Sohn
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Minotti C, Barbieri E, Doni D, Impieri C, Giaquinto C, Donà D. Anti-infective Medicines Use in Children and Neonates With Pre-existing Kidney Dysfunction: A Systematic Review. Front Pediatr 2022; 10:868513. [PMID: 35558367 PMCID: PMC9087830 DOI: 10.3389/fped.2022.868513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dosing recommendations for anti-infective medicines in children with pre-existing kidney dysfunction are derived from adult pharmacokinetics studies and adjusted to kidney function. Due to neonatal/pediatric age and kidney impairment, modifications in renal clearance and drug metabolism make standard anti-infective dosing for children and neonates inappropriate, with a risk of drug toxicity or significant underdosing. The aim of this study was the systematic description of the use of anti-infective medicines in pediatric patients with pre-existing kidney impairment. Methods A systematic review of the literature was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The EMBASE, Medline and Cochrane databases were searched on September 21st, 2021. Studies in all languages reporting data on pre-defined outcomes (pharmacokinetics-PK, kidney function, safety and efficacy) regarding the administration of anti-infective drugs in children up to 18 years with pre-existing kidney dysfunction were included. Results 29 of 1,792 articles were eligible for inclusion. There were 13 case reports, six retrospective studies, nine prospective studies and one randomized controlled trial (RCT), reporting data on 2,168 pediatric patients. The most represented anti-infective class was glycopeptides, with seven studies on vancomycin, followed by carbapenems, with five studies, mostly on meropenem. Antivirals, aminoglycosides and antifungals counted three articles, followed by combined antibiotic therapy, cephalosporins, lipopeptides with two studies, respectively. Penicillins and polymixins counted one study each. Nine studies reported data on patients with a decreased kidney function, while 20 studies included data on kidney replacement therapy (KRT). Twenty-one studies reported data on PK. In 23 studies, clinical outcomes were reported. Clinical cure was achieved in 229/242 patients. There were four cases of underdosing, one case of overdosing and 13 reported deaths. Conclusion This is the first systematic review providing evidence of the use of anti-infective medicines in pediatric patients with impaired kidney function or requiring KRT. Dosing size or interval adjustments in pediatric patients with kidney impairment vary according to age, critical illness status, decreased kidney function and dialysis type. Our findings underline the relevance of population PK in clinical practice and the need of developing predictive specific models for critical pediatric patients.
Collapse
Affiliation(s)
- Chiara Minotti
- Division of Pediatric Infectious Diseases, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Elisa Barbieri
- Division of Pediatric Infectious Diseases, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Denis Doni
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Cristina Impieri
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Carlo Giaquinto
- Division of Pediatric Infectious Diseases, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Daniele Donà
- Division of Pediatric Infectious Diseases, Department of Women's and Children's Health, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Butragueño-Laiseca L, Marco-Ariño N, Troconiz IF, Grau S, Campillo N, García X, Padilla B, Fernández SN, Slöcker M, Santiago MJ. Population pharmacokinetics of piperacillin in critically ill children including those undergoing continuous kidney replacement therapy. Clin Microbiol Infect 2022; 28:1287.e9-1287.e15. [PMID: 35390523 DOI: 10.1016/j.cmi.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Despite that piperacillin-tazobactam combination is commonly used in critically ill children, increasing evidence suggests that the current dosing schedules are not optimal for these patients. The aim of this work is to develop a population pharmacokinetic (PK) model for piperacillin to evaluate the efficacy of standard dosing in children with and without kidney replacement therapy (CKRT), and to propose alternative dosing schemes maximizing target attainment. METHODS 429 piperacillin concentrations measured in different matrices, obtained from 32 critically ill children (19 without CKRT, 13 with CKRT) receiving 100 mg/kg of piperacillin/tazobactam every 8 hours (increased to 12h after the 4th dose) were modelled simultaneously using the population approach with NONMEM 7.4. The percentage of patients with 90% fT>MIC and target attainment (percentage of dosing interval above MIC) were estimated for different intermittent and continuous infusions in the studied population. RESULTS Piperacillin PK was best described with a two-compartment model. Renal (CLR), nonrenal (CLM), and hemofilter (CLCKRT) clearances were found to be influenced by the glomerular filtration rate, height (CLR), weight (CLM) and filter surface (CLCKRT). Only 7 (37%) children without CKRT and 7 (54%) with CKRT achieved 90% fT >MIC with the current dosing schedule. Of the alternative regimens evaluated, a 24h continuous infusion of 200 mg/kg (CKRT) and 300 mg/kg (no CKRT) provided 100% fT >MIC(≤16mg/L) and target attainments ≥90% across all evaluated MICs. CONCLUSIONS In children with and without CKRT, standard dosing failed to provide an adequate systemic exposure, while prolonged and continuous infusions showed an improved efficacy.
Collapse
Affiliation(s)
- Laura Butragueño-Laiseca
- Pediatric Intensive Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain; Pediatrics Department, Universidad Complutense de Madrid, Spain; Maternal and Child Health and Development Research Network (REDSAMID), Institute of Health Carlos III, Madrid, Spain
| | - Nicolás Marco-Ariño
- Pharmacometrics & Systems Pharmacology Research Unit, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Iñaki F Troconiz
- Pharmacometrics & Systems Pharmacology Research Unit, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital del Mar, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Nuria Campillo
- Pharmacy Department, Hospital del Mar, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Xandra García
- Pharmacy Department, Hospital General Universitario Gregorio Marañón
| | - Belén Padilla
- Clinical Microbiology Department, Hospital General Universitario Gregorio Marañón
| | - Sarah Nicole Fernández
- Pediatric Intensive Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain; Pediatrics Department, Universidad Complutense de Madrid, Spain; Maternal and Child Health and Development Research Network (REDSAMID), Institute of Health Carlos III, Madrid, Spain
| | - María Slöcker
- Pediatric Intensive Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain; Pediatrics Department, Universidad Complutense de Madrid, Spain; Maternal and Child Health and Development Research Network (REDSAMID), Institute of Health Carlos III, Madrid, Spain
| | - María José Santiago
- Pediatric Intensive Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain; Pediatrics Department, Universidad Complutense de Madrid, Spain; Maternal and Child Health and Development Research Network (REDSAMID), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Matusik E, Lemtiri J, Wabont G, Lambiotte F. Beta-lactam dosing during continuous renal replacement therapy: a survey of practices in french intensive care units. BMC Nephrol 2022; 23:48. [PMID: 35093011 PMCID: PMC8800323 DOI: 10.1186/s12882-022-02678-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/15/2022] [Indexed: 02/03/2023] Open
Abstract
Abstract
Background
Little information is available on current practice in beta-lactam dosing during continuous renal replacement therapy (CRRT). Optimized dosing is essential for improving outcomes, and there is no consensus on the appropriate dose regimens. The objective of the present study was to describe current practice for beta-lactam dosing during CRRT in intensive care units (ICUs).
Methods
We conducted a nationwide survey by e-mailing an online questionnaire to physicians working in ICUs in France. The questionnaire included three sections: demographic characteristics, CRRT practices, and beta-lactam dosing regimens during CRRT.
Results
157 intensivists completed the questionnaire. Continuous venovenous hemofiltration was the most frequently used CRRT technique, and citrate was the most regularly used anticoagulant. The median prescribed dose at baseline was 30 mL/kg/h. The majority of prescribers (57%) did not reduce beta-lactam dosing during CRRT. The tools were used to adapt dosing regimens during CRRT included guidelines, therapeutic drug monitoring (TDM), and data from the literature. When TDM was used, 100% T > 4 time the MIC was the most common mentioned pharmacokinetic/pharmacodynamic target (53%). Pharmacokinetic software tools were rarely used. Prolonged or continuous infusions were widely used during CRRT (88%). Institutional guidelines on beta-lactam dosing during CRRT were rare. 41% of physicians sometimes consulted another specialist before adapting the dose of antibiotic during CRRT.
Conclusions
Our present results highlight the wide range of beta-lactam dosing practices adopted during CRRT. Personalized TDM and the implementation of Bayesian software appear to be essential for optimizing beta-lactam dosing regimens and improving patient outcomes.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW A major challenge in the ICU is optimization of antibiotic use. This review assesses current understanding of core best practices supporting and promoting astute antibiotic decision-making. RECENT FINDINGS Limiting exposure to the shortest effective duration is the cornerstone of antibiotic decision-making. The decision to initiate antibiotics should include assessment of risk for resistance. This requires synthesis of patient-level data and environmental factors to determine whether delayed initiation could be considered in some patients with suspected sepsis until sensitivity data is available. Until improved stratification scores and clinically meaningful cut-off values to identify MDR are available and externally validated, decisions as to which empiric antibiotic is used should rely on syndromic antibiograms and institutional guidance. Optimization of initial and maintenance doses is another enabler of enhanced outcome. Stewardship practices must be streamlined by re-assessment to minimize negative effects, such as a potential increase in duration of therapy and increased risk of collateral damage from exposure to multiple, sequential antibiotics that may ensue from de-escalation. SUMMARY Multiple challenges and research priorities for antibiotic optimization remain; however, the best stewardship practices should be identified and entrenched in daily practice. Reducing unnecessary exposure remains a vital strategy to limit resistance development.
Collapse
|
6
|
Finding the Dose for Ceftolozane-Tazobactam in Critically Ill Children with and without Acute Kidney Injury. Antibiotics (Basel) 2020; 9:antibiotics9120887. [PMID: 33321721 PMCID: PMC7763445 DOI: 10.3390/antibiotics9120887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/07/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Ceftolozane-tazobactam is a new antibiotic against multidrug-resistant pathogens such as Pseudomonas aeruginosas. Ceftolozane-tazobactam dosage is still uncertain in children, especially in those with renal impairment or undergoing continuous renal replacement therapy (CRRT). Methods: Evaluation of different ceftolozane-tazobactam dosing regimens in three critically ill children. Ceftolozane pharmacokinetics (PK) were characterized by obtaining the patient’s specific parameters by Bayesian estimation based on a population PK model. The clearance (CL) in patient C undergoing CRRT was estimated using the prefilter, postfilter, and ultrafiltrate concentrations simultaneously. Variables such as blood, dialysate, replacement, and ultrafiltrate flow rates, and hematocrit were integrated in the model. All PK analyses were performed using NONMEM v.7.4. Results: Patient A (8 months of age, 8.7 kg) with normal renal function received 40 mg/kg every 6 h: renal clearance (CLR) was 0.88 L/h; volume of distribution (Vd) Vd1 = 3.45 L, Vd2 = 0.942 L; terminal halflife (t1/2,β) = 3.51 h, dosing interval area under the drug concentration vs. time curve at steady-state (AUCτ,SS) 397.73 mg × h × L−1. Patient B (19 months of age, 11 kg) with eGFR of 22 mL/min/1.73 m2 received 36 mg/kg every 8 h: CLR = 0.27 L/h; Vd1 = 1.13 L; Vd2 = 1.36; t1/2,β = 6.62 h; AUCSS 1481.48 mg × h × L−1. Patient C (9 months of age, 5.8 kg), with severe renal impairment undergoing CRRT received 30 mg/kg every 8 h: renal replacement therapy clearance (CLRRT) 0.39 L/h; Vd1 = 0.74 L; Vd2= 1.17; t 1/2,β = 3.51 h; AUCτ,SS 448.72 mg × h × L−1. No adverse effects attributable to antibiotic treatment were observed. Conclusions: Our results suggest that a dose of 35 mg/kg every 8 h can be appropriate in critically ill septic children with multi-drug resistance Pseudomonas aeruginosa infections. A lower dose of 10 mg/kg every 8 h could be considered for children with severe AKI. For patients with CRRT and a high effluent rate, a dose of 30 mg/kg every 8 h can be considered.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Antimicrobial resistance among Gram-negative organisms is a rapidly escalating global challenge. Pharmacologic dose optimization based on pharmacokinetic/pharmacodynamic principles is essential for managing Gram-negative infections. High-risk patient populations may receive nonoptimized antimicrobial dosing because pf physiologic changes in acute illness and/or medical interventions. The purpose of this review is to discuss opportunities for pharmacologic optimization of new agents and highlight patient populations that are often associated with poor drug exposure profiles. RECENT FINDINGS Dose optimization of the novel β-lactam-β-lactamase inhibitor combinations has been evaluated through optimizing exposure at the site of infection, evaluating target attainment of both the β-lactam and the β-lactamase-inhibitor in critically ill patients, and evaluating drug exposure to prevent the development of resistance. Plazomicin, a novel aminoglycoside, has pharmacodynamic optimization potential via therapeutic drug monitoring and nomogram-based dosing. Recent studies have evaluated the adequacy of dosing in varying degrees of renal function specifically acute kidney injury, continuous renal replacement therapy (CRRT), and augmented renal clearance (ARC). SUMMARY The application of fundamental pharmacokinetic/pharmacodynamic principles is required to optimize new antimicrobials in the treatment of serious Gram-negative infections. Exposure at the site of infection, pharmacokinetics in critically ill patients, and exposures to prevent resistance are all considerations to improve microbiologic and clinical outcomes. Therapeutic drug monitoring may be needed for high-risk patients.
Collapse
|