1
|
Marchitelli R, Paillère Martinot ML, Trouvé A, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Garavan H, Gowland P, Heinz A, Brühl R, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Hohmann S, Holz N, Vaidya N, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Martinot JL, Artiges E. Coupled changes between ruminating thoughts and resting-state brain networks during the transition into adulthood. Mol Psychiatry 2024; 29:3769-3778. [PMID: 38956372 DOI: 10.1038/s41380-024-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 07/04/2024]
Abstract
Perseverative negative thoughts, known as rumination, might arise from emotional challenges and preclude mental health when transitioning into adulthood. Due to its multifaceted nature, rumination can take several ruminative response styles, that diverge in manifestations, severity, and mental health outcomes. Still, prospective ruminative phenotypes remain elusive insofar. Longitudinal study designs are ideal for stratifying ruminative response styles, especially with resting-state functional MRI whose setup naturally elicits people's ruminative traits. Here, we considered self-rated questionnaires on rumination and psychopathology, along with resting-state functional MRI data in 595 individuals assessed at age 18 and 22 from the IMAGEN cohort. We conducted independent component analysis to characterize eight single static resting-state functional networks in each subject and session and furthermore conducted a dynamic analysis, tackling the time variations of functional networks during the entire scanning time. We then investigated their longitudinal mediation role between changes in three ruminative response styles (reflective pondering, brooding, and depressive rumination) and changes in internalizing and co-morbid externalizing symptoms. Four static and two dynamic networks longitudinally differentiated these ruminative styles and showed complemental sensitivity to internalizing and co-morbid externalizing symptoms. Among these networks, the right frontoparietal network covaried with all ruminative styles but did not play any mediation role towards psychopathology. The default mode, the salience, and the limbic networks prospectively stratified these ruminative styles, suggesting that maladaptive ruminative styles are associated with altered corticolimbic function. For static measures, only the salience network played a longitudinal causal role between brooding rumination and internalizing symptoms. Dynamic measures highlighted the default-mode mediation role between the other ruminative styles and co-morbid externalizing symptoms. In conclusion, we identified the ruminative styles' psychometric and neural outcome specificities, supporting their translation into applied research on young adult mental healthcare.
Collapse
Affiliation(s)
- Rocco Marchitelli
- Ecole Normale Supérieure Paris-Saclay, University Paris-Saclay, University Paris-City, INSERM U1299 "Developmental Trajectories & Psychiatry, Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Ecole Normale Supérieure Paris-Saclay, University Paris-Saclay, University Paris-City, INSERM U1299 "Developmental Trajectories & Psychiatry, Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
- AP-HP Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Alain Trouvé
- Ecole Normale Supérieure Paris-Saclay, University Paris-Saclay, University Paris-City, INSERM U1299 "Developmental Trajectories & Psychiatry, Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, and German Center for Mental Health (DZPG) partner site Mannheim-Heidelberg-Ulm, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Berlin, Germany
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, and German Center for Mental Health (DZPG) partner site Mannheim-Heidelberg-Ulm, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CHU Sainte-Justine Research Center, Population Neuroscience Laboratory, University of Montreal, Montreal, QC, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, and German Center for Mental Health (DZPG) partner site Mannheim-Heidelberg-Ulm, Heidelberg University, Mannheim, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, and German Center for Mental Health (DZPG) partner site Mannheim-Heidelberg-Ulm, Heidelberg University, Mannheim, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Psychotherapy, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI Fudan University, Shanghai, China
- Department of Psychiatry and Neuroscience, Charité University Medicine, Berlin, Germany
| | - Jean-Luc Martinot
- Ecole Normale Supérieure Paris-Saclay, University Paris-Saclay, University Paris-City, INSERM U1299 "Developmental Trajectories & Psychiatry, Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France.
- Department of Psychiatry, Lab-D-PSY, EPS Barthélémy Durand, Etampes, France.
| | - Eric Artiges
- Ecole Normale Supérieure Paris-Saclay, University Paris-Saclay, University Paris-City, INSERM U1299 "Developmental Trajectories & Psychiatry, Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
- Department of Psychiatry, Lab-D-PSY, EPS Barthélémy Durand, Etampes, France
| |
Collapse
|
2
|
Cheng X, Chen J, Zhang X, Wang T, Sun J, Zhou Y, Yang R, Xiao Y, Chen A, Song Z, Chen P, Yang C, QiuxiaWu, Lin T, Chen Y, Cao L, Wei X. Characterizing the temporal dynamics of intrinsic brain activities in depressed adolescents with prior suicide attempts. Eur Child Adolesc Psychiatry 2024; 33:1179-1191. [PMID: 37284850 PMCID: PMC11032277 DOI: 10.1007/s00787-023-02242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Converging evidence has revealed disturbances in the corticostriatolimic system are associated with suicidal behaviors in adults with major depressive disorder. However, the neurobiological mechanism that confers suicidal vulnerability in depressed adolescents is largely unknown. A total of 86 depressed adolescents with and without prior suicide attempts (SA) and 47 healthy controls underwent resting-state functional imaging (R-fMRI) scans. The dynamic amplitude of low-frequency fluctuations (dALFF) was measured using sliding window approach. We identified SA-related alterations in dALFF variability primarily in the left middle temporal gyrus, inferior frontal gyrus, middle frontal gyrus (MFG), superior frontal gyrus (SFG), right SFG, supplementary motor area (SMA) and insula in depressed adolescents. Notably, dALFF variability in the left MFG and SMA was higher in depressed adolescents with recurrent suicide attempts than in those with a single suicide attempt. Moreover, dALFF variability was capable of generating better diagnostic and prediction models for suicidality than static ALFF. Our findings suggest that alterations in brain dynamics in regions involved in emotional processing, decision-making and response inhibition are associated with an increased risk of suicidal behaviors in depressed adolescents. Furthermore, dALFF variability could serve as a sensitive biomarker for revealing the neurobiological mechanisms underlying suicidal vulnerability.
Collapse
Affiliation(s)
- Xiaofang Cheng
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Jianshan Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Xiaofei Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Ting Wang
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Yuexiu district, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Jiaqi Sun
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Ruilan Yang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Yeyu Xiao
- Guangzhou Integrated Traditional Chinese and Western Medicine, Guangzhou, 510800, Guangdong, People's Republic of China
| | - Amei Chen
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Yuexiu district, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Ziyi Song
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Pinrui Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Chanjuan Yang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - QiuxiaWu
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Taifeng Lin
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Yingmei Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Liping Cao
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China.
| | - Xinhua Wei
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Yuexiu district, Guangzhou, 510180, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Zhang G, Lv S, Zhong X, Li X, Yi Y, Lu Y, Yan W, Li J, Teng J. Ferroptosis: a new antidepressant pharmacological mechanism. Front Pharmacol 2024; 14:1339057. [PMID: 38259274 PMCID: PMC10800430 DOI: 10.3389/fphar.2023.1339057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence rate of depression, a mental disorder, is steadily increasing and has the potential to become a major global disability factor. Given the complex pathological mechanisms involved in depression, the use of conventional antidepressants may lead to severe complications due to their side effects. Hence, there is a critical need to explore the development of novel antidepressants. Ferroptosis, a newly recognized form of cell death, has been found to be closely linked to the onset of depression. Several studies have indicated that certain active ingredients can ameliorate depression by modulating the ferroptosis signaling pathway. Notably, traditional Chinese medicine (TCM) active ingredients and TCM prescriptions have demonstrated promising antidepressant effects in previous investigations owing to their unique advantages in antidepressant therapy. Building upon these findings, our objective was to review recent relevant research and provide new insights and directions for the development and application of innovative antidepressant strategies.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Cai C, Yin C, Tong Y, Qu D, Ding Y, Ren D, Chen P, Yin Y, An J, Chen R. Development of the Life Gatekeeper suicide prevention training programme in China: a Delphi study. Gen Psychiatr 2023; 36:e101133. [PMID: 37859750 PMCID: PMC10582848 DOI: 10.1136/gpsych-2023-101133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
Background Youth suicide has been a pressing public mental health concern in China, yet there is a lack of gatekeeper intervention programmes developed locally to prevent suicide among Chinese adolescents. Aims The current Delphi study was the first step in the systematic development of the Life Gatekeeper programme, the first gatekeeper programme to be developed locally in China that aims to equip teachers and parents with the knowledge, skills and ability to identify and intervene with students at high risk of suicide. Methods The Delphi method was used to elicit a consensus of experts who were invited to evaluate the importance of training content, the feasibility of the training delivery method, the possibility of achieving the training goals and, finally, the appropriateness of the training materials. Two Delphi rounds were conducted among local experts with diversified professional backgrounds in suicide research and practice. Statements were accepted for inclusion in the adjusted training programme if they were endorsed by at least 80% of the panel. Results Consensus was achieved on 201 out of 207 statements for inclusion into the adapted guidelines for the gatekeeper programme, with 151 from the original questionnaire and 50 generated from comments of the panel members. These endorsed statements were synthesised to develop the content of the Life Gatekeeper training programme. Conclusions This Delphi study provided an evidence base for developing the first gatekeeper training programme systematically and locally in China. We hope that the current study can pave the way for more evidence-based suicide prevention programmes in China. Further study is warranted to evaluate the effectiveness of the Life Gatekeeper training programme.
Collapse
Affiliation(s)
- Chengxi Cai
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Chen Yin
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yongsheng Tong
- Beijing Huilongguan Hospital, Beijing, China
- HuiLongGuan Clinical Medical School, Peking University, Beijing, China
- WHO Collaborating Center for Research and Training in Suicide Prevention, Beijing, China
| | - Diyang Qu
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yunzhi Ding
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Daixi Ren
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Peiyu Chen
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yi Yin
- Beijing Huilongguan Hospital, Beijing, China
- HuiLongGuan Clinical Medical School, Peking University, Beijing, China
- WHO Collaborating Center for Research and Training in Suicide Prevention, Beijing, China
| | - Jing An
- Beijing Huilongguan Hospital, Beijing, China
- HuiLongGuan Clinical Medical School, Peking University, Beijing, China
- WHO Collaborating Center for Research and Training in Suicide Prevention, Beijing, China
| | - Runsen Chen
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| |
Collapse
|