1
|
Antonelli A, Scarpa ES, Bruzzone S, Astigiano C, Piacente F, Bruschi M, Fraternale A, Di Buduo CA, Balduini A, Magnani M. Anoxia Rapidly Induces Changes in Expression of a Large and Diverse Set of Genes in Endothelial Cells. Int J Mol Sci 2023; 24:ijms24065157. [PMID: 36982232 PMCID: PMC10049254 DOI: 10.3390/ijms24065157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Sinusoidal endothelial cells are the predominant vascular surface of the bone marrow and constitute the functional hematopoietic niche where hematopoietic stem and progenitor cells receive cues for self-renewal, survival, and differentiation. In the bone marrow hematopoietic niche, the oxygen tension is usually very low, and this condition affects stem and progenitor cell proliferation and differentiation and other important functions of this region. Here, we have investigated in vitro the response of endothelial cells to a marked decrease in O2 partial pressure to understand how the basal gene expression of some relevant biological factors (i.e., chemokines and interleukins) that are fundamental for the intercellular communication could change in anoxic conditions. Interestingly, mRNA levels of CXCL3, CXCL5, and IL-34 genes are upregulated after anoxia exposure but become downmodulated by sirtuin 6 (SIRT6) overexpression. Indeed, the expression levels of some other genes (such as Leukemia Inhibitory Factor (LIF)) that were not significantly affected by 8 h anoxia exposure become upregulated in the presence of SIRT6. Therefore, SIRT6 mediates also the endothelial cellular response through the modulation of selected genes in an extreme hypoxic condition.
Collapse
Affiliation(s)
- Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | | | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Cecilia Astigiano
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University in Boston, Boston, MA 02111, USA
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| |
Collapse
|
2
|
Ye S, Lin R, Guo X, Xing J, Liu K, Yang W, Guo N. Bioinformatics analysis on the expression of GPX family in gastric cancer and its correlation with the prognosis of gastric cancer. Heliyon 2022; 8:e12214. [PMID: 36636221 PMCID: PMC9830173 DOI: 10.1016/j.heliyon.2022.e12214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers of the digestive tract, with the fifth-highest incidence and third highest mortality rate in the world. Methods In this study, the Kaplan-Meier Plotter database was used to analyze the correlation between the expression of the glutathione peroxidase (GPX) family and the clinical prognosis of gastric cancer (GC). The prognostic value of increased GPX family mRNA expression in GC patients in different clinical stages, with different differentiation degrees, in different genders and human epidermal growth factor receptor-2 (HER2) status, and treated with different therapeutic regimens was also studied. Results The results showed that with the increase of GPX1 and GPX2 mRNA low expression levels, the overall survival (OS) of gastric cancer patients was longer. However, when the high expression levels of GPX3, GPX5 and GPX6 mRNA increased, gastric cancer patients presented good OS, while the increase of GPX4 mRNA expression level had no significant correlation with OS in gastric cancer patients. Conclusion The results of this study are expected to provide a reliable basis for the clinical treatment of GC and lay a foundation for the development of a novel GC treatment approach.
Collapse
Affiliation(s)
- Siping Ye
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Rui Lin
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Xiao Guo
- School of Pharmacy, Beihua University, Jilin 132012, China,Gongqing Institute of Science and Technology, Jiujiang 332020, China,Corresponding author.
| | - Jiaying Xing
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Keyi Liu
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Wenchuang Yang
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Naiyuan Guo
- School of Pharmacy, Beihua University, Jilin 132012, China
| |
Collapse
|
3
|
Zhao Q, Zhang L, Wang Y, Sun Y, Wang T, Cao J, Qi M, Du X, Xia Z, Zhang R, Yang Y. A Bioinformatic Analysis: The Overexpression and Prognostic Potential of GPX7 in Lower-Grade Glioma. Int J Gen Med 2022; 15:4321-4337. [PMID: 35480989 PMCID: PMC9037894 DOI: 10.2147/ijgm.s356850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Glutathione peroxidase-7 (GPX7) is a newly discovered non-selenium-containing protein with glutathione peroxidase activity, which mainly protects the organism from oxidative damage and is very important for basic biology studies. This study aims to reveal the expression pattern of GPX7 and its prognosis potential from a pan-cancer perspective. Methods Expression levels of GPX7 in human tumor tissues and normal tissues were evaluated using Human Protein Atlas (HPA), the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and UALCAN databases. The prognostic potential of GPX7 for 33 TCGA tumors was evaluated by Kaplan–Meier analysis and Cox regression analysis. Subsequently, the Chinese Glioma Genome Atlas (CGGA) dataset was used to further verify the expression of GPX7 and its prognostic potential in glioma. We explored the correlation between GPX7 and immune infiltration, tumor mutational burden (TMB) and microsatellite instability (MSI). Furthermore, a nomogram lower-grade glioma (LGG) was constructed to verify the prognostic outcome of patients. Finally, the relationship between GPX7 and treatment regimens for LGG was also explored. Results GPX7 was overexpressed in multiple tumors. Elevated expression of GPX7 was associated with poor prognosis of LGG patients (OS hazard ratio (HR) = 1.044, P < 0.0001; DFS HR = 1.035, P < 0.0001; PFS HR = 1.045, P < 0.0001). GPX7 was proved to be an independent prognostic factor of LGG through univariate and multivariate Cox analysis. The nomogram confirmed a better predictability (Concordance index (C-index): 0.845; 95% CI, 0.825–0.865). GPX7 was positively correlated with TMB in LGG. GPX7 expression was negatively correlated with half-maximal inhibitory concentration (IC50) of temozolomide (TMZ) (\documentclass[12pt]{minimal}
\usepackage{wasysym}
\usepackage[substack]{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage[mathscr]{eucal}
\usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{}
\DeclareFontShape{T1}{linotext}{m}{n} {linotext }{}
\DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext}
\begin{document}
$$\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \rho } $$
\end{document}spearman= −0.59, P =1.3e-48). Conclusion GPX7 was upregulated in multiple tumors, and it was a potential prognostic biomarker in LGG. High-expressed GPX7 can predict the sensitivity of TMZ in LGG patients.
Collapse
Affiliation(s)
- Qianqian Zhao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Luyu Zhang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Yingying Wang
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Ye Sun
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Tianpei Wang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Jingjing Cao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Meng Qi
- Ankang R&D Center of Se-Enriched Products, Ankang, Shaanxi, People’s Republic of China
| | - Xiaoping Du
- Ankang R&D Center of Se-Enriched Products, Ankang, Shaanxi, People’s Republic of China
| | - Zengrun Xia
- Ankang R&D Center of Se-Enriched Products, Ankang, Shaanxi, People’s Republic of China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
- Correspondence: Rongqiang Zhang, School of Public Health, Shaanxi University of Chinese Medicine, No.1 Middle Section of Century Avenue, Xianyang, Shaanxi, 712046, People’s Republic of China, Tel/Fax +86-029-38185219 Email
| | - Yin Yang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
- The Second Department of Orthopedics, Xi’an Central Hospital, Xi’an, Shaanxi, People’s Republic of China
- Yin Yang, The Second Department of Orthopedics, Xi’an Central Hospital, No. 161, West Fifth Road, Xincheng District, Xi’an, Shaanxi, 710003, People’s Republic of China, Email
| |
Collapse
|
4
|
Peng D, Zaika A, Que J, El-Rifai W. The antioxidant response in Barrett's tumorigenesis: A double-edged sword. Redox Biol 2021; 41:101894. [PMID: 33621787 PMCID: PMC7907897 DOI: 10.1016/j.redox.2021.101894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is the dominant form of esophageal malignancies in the United States and other industrialized countries. The incidence of EAC has been rising rapidly during the past four decades. Barrett's esophagus (BE) is the main precancerous condition for EAC, where a metaplastic columnar epithelium replaces normal squamous mucosa of the lower esophagus. The primary risk factor for BE and EAC are chronic gastroesophageal reflux disease (GERD), obesity and smoking. During the BE-dysplasia-EAC sequence, esophageal cells are under a tremendous burden of accumulating reactive oxygen species (ROS) and oxidative stress. While normal cells have intact antioxidant machinery to maintain a balanced anti-tumorigenic physiological response, the antioxidant capacity is compromised in neoplastic cells with a pro-tumorigenic development antioxidant response. The accumulation of ROS, during the neoplastic progression of the GERD-BE-EAC sequence, induces DNA damage, lipid peroxidation and protein oxidation. Neoplastic cells adapt to oxidative stress by developing a pro-tumorigenic antioxidant response that keeps oxidative damage below lethal levels while promoting tumorigenesis, progression, and resistance to therapy. In this review, we will summarize the recent findings on oxidative stress in tumorigenesis in the context of the GERD-BE-EAC process. We will discuss how EAC cells adapt to increased ROS. We will review APE1 and NRF2 signaling mechanisms in the context of EAC. Finally, we will discuss the potential clinical significance of applying antioxidants or NRF2 activators as chemoprevention and NRF2 inhibitors in treating EAC patients.
Collapse
Affiliation(s)
- Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Alexander Zaika
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, USA
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| |
Collapse
|
5
|
Chao-yang G, Rong T, Yong-qiang S, Tai-cong L, Kai-sheng Z, Wei N, Hai-hong Z. Prognostic Signatures of Metabolic Genes and Metabolism-Related Long Non-coding RNAs Accurately Predict Overall Survival for Osteosarcoma Patients. Front Cell Dev Biol 2021; 9:644220. [PMID: 33708772 PMCID: PMC7940372 DOI: 10.3389/fcell.2021.644220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we identified eight survival-related metabolic genes in differentially expressed metabolic genes by univariate Cox regression analysis based on the therapeutically applicable research to generate effective treatments (n = 84) data set and genotype tissue expression data set (n = 396). We also constructed a six metabolic gene signature to predict the overall survival of osteosarcoma (OS) patients using least absolute shrinkage and selection operator (Lasso) Cox regression analysis. Our results show that the six metabolic gene signature showed good performance in predicting survival of OS patients and was also an independent prognostic factor. Stratified correlation analysis showed that the metabolic gene signature accurately predicted survival outcomes in high-risk and low-risk OS patients. The six metabolic gene signature was also verified to perform well in predicting survival of OS patients in an independent cohort (GSE21257). Then, using univariate Cox regression and Lasso Cox regression analyses, we identified an eight metabolism-related long noncoding RNA (lncRNA) signature that accurately predicts overall survival of OS patients. Gene set variation analysis showed that the apical surface and bile acid metabolism, epithelial mesenchymal transition, and P53 pathway were activated in the high-risk group based on the eight metabolism-related lncRNA signature. Furthermore, we constructed a competing endogenous RNA (ceRNA) network and conducted immunization score analysis based on the eight metabolism-related lncRNA signature. These results showed that the six metabolic gene signature and eight metabolism-related lncRNA signature have good performance in predicting the survival outcomes of OS patients.
Collapse
Affiliation(s)
- Gong Chao-yang
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Tang Rong
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Shi Yong-qiang
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Liu Tai-cong
- Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | | | - Nan Wei
- Lanzhou University Second Hospital, Lanzhou, China
| | | |
Collapse
|
6
|
Zhang ML, Wu HT, Chen WJ, Xu Y, Ye QQ, Shen JX, Liu J. Involvement of glutathione peroxidases in the occurrence and development of breast cancers. J Transl Med 2020; 18:247. [PMID: 32571353 PMCID: PMC7309991 DOI: 10.1186/s12967-020-02420-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glutathione peroxidases (GPxs) belong to a family of enzymes that is important in organisms; these enzymes promote hydrogen peroxide metabolism and protect cell membrane structure and function from oxidative damage. Based on the establishment and development of the theory of the pathological roles of free radicals, the role of GPxs has gradually attracted researchers' attention, and the involvement of GPxs in the occurrence and development of malignant tumors has been shown. On the other hand, the incidence of breast cancer in increasing, and breast cancer has become the leading cause of cancer-related death in females worldwide; breast cancer is thought to be related to the increased production of reactive oxygen species, indicating the involvement of GPxs in these processes. Therefore, this article focused on the molecular mechanism and function of GPxs in the occurrence and development of breast cancer to understand their role in breast cancer and to provide a new theoretical basis for the treatment of breast cancer.
Collapse
Affiliation(s)
- Man-Li Zhang
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wen-Jia Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Ya Xu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Qian-Qian Ye
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Jia-Xin Shen
- Department of Hematology, the First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Jing Liu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China.
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
7
|
de Cristofaro T, Di Palma T, Soriano AA, Monticelli A, Affinito O, Cocozza S, Zannini M. Candidate genes and pathways downstream of PAX8 involved in ovarian high-grade serous carcinoma. Oncotarget 2018; 7:41929-41947. [PMID: 27259239 PMCID: PMC5173106 DOI: 10.18632/oncotarget.9740] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/16/2016] [Indexed: 12/26/2022] Open
Abstract
Understanding the biology and molecular pathogenesis of ovarian epithelial cancer (EOC) is key to developing improved diagnostic and prognostic indicators and effective therapies. Although research has traditionally focused on the hypothesis that high-grade serous carcinoma (HGSC) arises from the ovarian surface epithelium (OSE), recent studies suggest that additional sites of origin exist and a substantial proportion of cases may arise from precursor lesions located in the Fallopian tubal epithelium (FTE). In FTE cells, the transcription factor PAX8 is a marker of the secretory cell lineage and its expression is retained in 96% of EOC. We have recently reported that PAX8 is involved in the tumorigenic phenotype of ovarian cancer cells. In this study, to uncover genes and pathways downstream of PAX8 involved in ovarian carcinoma we have determined the molecular profiles of ovarian cancer cells and in parallel of Fallopian tube epithelial cells by means of a silencing approach followed by an RNA-seq analysis. Interestingly, we highlighted the involvement of pathways like WNT signaling, epithelial-mesenchymal transition, p53 and apoptosis. We believe that our analysis has led to the identification of candidate genes and pathways regulated by PAX8 that could be additional targets for the therapy of ovarian carcinoma.
Collapse
Affiliation(s)
- Tiziana de Cristofaro
- IEOS, Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| | - Tina Di Palma
- IEOS, Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| | - Amata Amy Soriano
- IEOS, Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Antonella Monticelli
- IEOS, Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| | - Ornella Affinito
- IEOS, Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Sergio Cocozza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Mariastella Zannini
- IEOS, Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| |
Collapse
|
8
|
Lei Z, Tian D, Zhang C, Zhao S, Su M. Clinicopathological and prognostic significance of GPX2 protein expression in esophageal squamous cell carcinoma. BMC Cancer 2016; 16:410. [PMID: 27388201 PMCID: PMC4936229 DOI: 10.1186/s12885-016-2462-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/27/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chaoshan region, a littoral area of Guangdong province in southern China, has a high incidence of esophageal squamous cell carcinoma (ESCC). At present, the prognosis of ESCC is still very poor, therefore, there is urgent need to seek valuable molecular biomarker for prognostic evaluation to guide clinical treatment. GPX2, a selenoprotein, was exclusively expressed in gastrointestinal tract and has an anti-oxidative damage and anti-tumour effect in the progress of tumourigenesis. METHODS We collected 161 ESCC patients samples, among which 83 patients were followed up. We employed immunochemistry analysis, western blotting and quantitative real-time PCR for measuring the expression of GPX2 within ESCC samples. We analysed the relationship between the expression of GPX2 and clinicopathological parameters of 161 patients with ESCC by Chi-square or Fisher's exact test. The survival analysis of GPX2 expression within ESCC tissues was evaluated by the Kaplan-Meier method and Cox-regression. RESULTS A significant higher expression level of GPX2 was detected in tumour tissues compared to that in non-tumour tissues (P < 0.001). Moreover, GPX2 expression has statistically significant difference in the tumour histological grade of ESCC (P < 0.001), while there was no statistically significant difference in age, sex, tumour size, tumour location, gross morphology and clinical TNM stages (P > 0.05). Meanwhile, the expression of GPX2 protein was obviously down-regulated within poorly differentiated ESCC. Last, survival analysis revealed that tumour histological grade and clinical TNM stages, both of the clinical pathological parameters of ESCC, were associated with the prognosis of patients with ESCC (respectively, P = 0.009, HR (95 % CI) = 1.885 (1.212 ~ 2.932); P = 0.007, HR (95 % CI) = 2.046 (1.318 ~ 3.177)). More importantly, loss expression of GPX2 protein predicted poor prognosis in patients with ESCC (P < 0.001, HR (95 % CI) = 5.700 (2.337 ~ 13.907)). CONCLUSIONS Collectively, these results suggested that the expression of GPX2 was significantly up-regulated within ESCC tumour tissues. GPX2 might be an important predictor for the prognosis of ESCC and a potential target for intervention and treatment of ESCC.
Collapse
Affiliation(s)
- Zhijin Lei
- />Department of Pathology and Institute of Clinical Pathology, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
| | - Dongping Tian
- />Department of Pathology and Institute of Clinical Pathology, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
- />Forensic Identification Center of Shantou University, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
| | - Chong Zhang
- />Department of Pathology and Institute of Clinical Pathology, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
| | - Shukun Zhao
- />Department of Pathology and Institute of Clinical Pathology, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
| | - Min Su
- />Department of Pathology and Institute of Clinical Pathology, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
- />Forensic Identification Center of Shantou University, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
| |
Collapse
|
9
|
Liu Y, Hu H, Zhang C, Wang Z, Li M, Jiang T. Integrated analysis identified genes associated with a favorable prognosis in oligodendrogliomas. Genes Chromosomes Cancer 2015; 55:169-76. [PMID: 26542540 DOI: 10.1002/gcc.22323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 11/10/2022] Open
Abstract
Oligodendrogliomas (ODs) are the second most common malignant brain tumor and exhibit characteristic co-deletion of chromosomal arms 1p and 19q (co-deletion 1p/19q), which is associated with down-regulation of tumor suppressors. However, co-deletion 1p/19q indicates a favorable prognosis that cannot be explained by the down-regulation of tumor suppressors. In the present study, we determined that co-deletion 1p/19q was associated with reduced Ki-67 protein level based on analysis of 354 ODs. To identify genes associated with reduced Ki-67 and a favorable prognosis of codeletion 1p/19q, we analyzed 96 ODs with RNA-sequencing and 136 ODs and 4 normal brain tissue samples with RNA microarrays. We thus identified seven genes within chromosomal arms 1p/19q with significantly reduced expression in samples with co-deletion of 1p/19q compared to samples with intact 1p/19q. A significant positive correlation was observed between these candidate genes and Ki-67 expression based on analysis of mRNA expression in 305 gliomas and 5 normal brain tissue samples. Survival analysis confirmed the prognostic value of these candidate genes. This finding suggests that these genes within chromosomal arms 1p/19q are associated with low Ki-67 and a favorable prognosis in ODs with co-deletion 1p/19q and provides novel therapeutic targets.
Collapse
Affiliation(s)
- Yanwei Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China
| | - Chuanbao Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China
| | - Zheng Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China
| | - Mingyang Li
- Chinese Glioma Cooperative Group (CGCG), China.,Department of Neurosurgery, Capital Medical University, Beijing Tiantan Hospital, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), China.,Department of Neurosurgery, Capital Medical University, Beijing Tiantan Hospital, Beijing, China.,Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|