1
|
Guenther M, Surendran SA, Steinke LM, Liou I, Palm MA, Heinemann V, Haas M, Boeck S, Ormanns S. The Prognostic, Predictive and Clinicopathological Implications of KRT81/HNF1A- and GATA6-Based Transcriptional Subtyping in Pancreatic Cancer. Biomolecules 2025; 15:426. [PMID: 40149962 PMCID: PMC11940166 DOI: 10.3390/biom15030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Transcriptional subtypes of pancreatic ductal adenocarcinoma (PDAC) based on the expression of hallmark genes may have prognostic implications and potential predictive functions. The two most employed subtyping markers assess the combined expression of KRT81 and HNF1A or of GATA6 alone, which can be detected by immunohistochemistry (IHC). This study aimed to determine the prognostic or predictive impact of both subtyping marker panels in two large cohorts of advanced and resected pancreatic ductal adenocarcinoma (PDAC) patients. METHODS Transcriptional subtypes were determined by combining the expression of KRT81/HNF1A or assessing GATA6 expression alone by IHC in samples of two independent PDAC patient cohorts (advanced PDAC n = 139 and resected PDAC n = 411) as well as in 57 matched primary tumors and their corresponding metastases. RNAseq-based expression data of 316 resected PDAC patients was analyzed for validation. RESULTS Transcriptional subtypes widely overlapped in both marker panels (χ2p < 0.001) but switched during disease progression in up to 31.6% of patients. They had a modest impact on the patients' prognosis in both cohorts, with longer overall survival (OS) for patients with KRT81-/HNF1A+ or GATA6+ tumors but better progression-free survival (PFS) and disease-free survival (DFS) in patients with KRT81+/GATA6- tumors treated with palliative or adjuvant gemcitabine-based chemotherapy. RNAseq expression data confirmed the findings. CONCLUSIONS Transcriptional subtypes have differential responses to palliative and adjuvant gemcitabine-based chemotherapy and may change during disease progression. Both employed subtyping marker panels are equivalent and may be used to inform clinical therapy decisions.
Collapse
Affiliation(s)
- Michael Guenther
- Innpath Institute of Pathology, Tirol Kliniken, 6020 Innsbruck, Austria;
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Sai Agash Surendran
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Lea Margareta Steinke
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Iduna Liou
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Melanie Alexandra Palm
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Volker Heinemann
- Department of Hematology and Oncology, München Klinik Neuperlach, 81737 Munich, Germany; (V.H.); (M.H.); (S.B.)
| | - Michael Haas
- Department of Hematology and Oncology, München Klinik Neuperlach, 81737 Munich, Germany; (V.H.); (M.H.); (S.B.)
- Department of Internal Medicine III, Grosshadern University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Stefan Boeck
- Department of Hematology and Oncology, München Klinik Neuperlach, 81737 Munich, Germany; (V.H.); (M.H.); (S.B.)
- Department of Internal Medicine III, Grosshadern University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Steffen Ormanns
- Innpath Institute of Pathology, Tirol Kliniken, 6020 Innsbruck, Austria;
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, 80337 Munich, Germany
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Dong C, Yao J, Wu Z, Hu J, Sun L, Wu Z, Yan J, Yin X. PAFAH1B3 is a KLF9 target gene that promotes proliferation and metastasis in pancreatic cancer. Sci Rep 2024; 14:9196. [PMID: 38649699 PMCID: PMC11035664 DOI: 10.1038/s41598-024-59427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies. Uncontrolled cell proliferation, invasion and migration of pancreatic cancer cells are the fundamental causes of death in PDAC patients. Our previous studies showed that KLF9 inhibits the proliferation, invasion and migration of pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In this study, we found that platelet-activating factor acetylhydrolase IB3 (PAFAH1B3) is highly expressed in pancreatic cancer tissues and cells. In vitro and in vivo studies showed that overexpression of PAFAH1B3 promoted the proliferation and invasion of pancreatic cancer cells, while downregulation of PAFAH1B3 inhibited these processes. We found that KLF9 expression is negatively correlated with PAFAH1B3 expression in pancreatic cancer tissues and cells. Western blotting revealed that KLF9 negatively regulates the expression of PAFAH1B3 in pancreatic cancer tissues and cells. Rescue experiments showed that overexpression of PAFAH1B3 could partially attenuate the suppression of pancreatic cancer cell proliferation, invasion and migration induced by KLF9 overexpression. Finally, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were carried out, and the results showed that KLF9 directly binds to the promoter of PAFAH1B3 and inhibits its transcriptional activity. In conclusion, our study indicated that KLF9 can inhibit the proliferation, invasion, migration and metastasis of pancreatic cancer cells by inhibiting PAFAH1B3.
Collapse
Affiliation(s)
- Cairong Dong
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Jinping Yao
- Department of Endocrinology Department, The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Zhipeng Wu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Junwen Hu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Liang Sun
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Zhengyi Wu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Jinlong Yan
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.
| | - Xiangbao Yin
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.
| |
Collapse
|
3
|
Kim B, Jung J. Metabolomic Approach to Identify Potential Biomarkers in KRAS-Mutant Pancreatic Cancer Cells. Biomedicines 2024; 12:865. [PMID: 38672219 PMCID: PMC11048406 DOI: 10.3390/biomedicines12040865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic cancer is characterized by its high mortality rate and limited treatment options, often driven by oncogenic RAS mutations. In this study, we investigated the metabolomic profiles of pancreatic cancer cells based on their KRAS genetic status. Utilizing both KRAS-wildtype BxPC3 and KRAS-mutant PANC1 cell lines, we identified 195 metabolites differentially altered by KRAS status through untargeted metabolomics. Principal component analysis and hierarchical condition trees revealed distinct separation between KRAS-wildtype and KRAS-mutant cells. Metabolite set enrichment analysis highlighted significant pathways such as homocysteine degradation and taurine and hypotaurine metabolism. Additionally, lipid enrichment analysis identified pathways including fatty acyl glycosides and sphingoid bases. Mapping of identified metabolites to KEGG pathways identified nine significant metabolic pathways associated with KRAS status, indicating diverse metabolic alterations in pancreatic cancer cells. Furthermore, we explored the impact of TRPML1 inhibition on the metabolomic profile of KRAS-mutant pancreatic cancer cells. TRPML1 inhibition using ML-SI1 significantly altered the metabolomic profile, leading to distinct separation between vehicle-treated and ML-SI1-treated PANC1 cells. Metabolite set enrichment analysis revealed enriched pathways such as arginine and proline metabolism, and mapping to KEGG pathways identified 17 significant metabolic pathways associated with TRPML1 inhibition. Interestingly, some metabolites identified in PANC1 compared to BxPC3 were oppositely regulated by TRPML1 inhibition, suggesting their potential as biomarkers for KRAS-mutant cancer cells. Overall, our findings shed light on the distinct metabolite changes induced by both KRAS status and TRPML1 inhibition in pancreatic cancer cells, providing insights into potential therapeutic targets and biomarkers for this deadly disease.
Collapse
Affiliation(s)
| | - Jewon Jung
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea;
| |
Collapse
|
4
|
Masugi Y, Takamatsu M, Tanaka M, Hara K, Inoue Y, Hamada T, Suzuki T, Arita J, Hirose Y, Kawaguchi Y, Nakai Y, Oba A, Sasahira N, Shimane G, Takeda T, Tateishi K, Uemura S, Fujishiro M, Hasegawa K, Kitago M, Takahashi Y, Ushiku T, Takeuchi K, Sakamoto M. Post-operative mortality and recurrence patterns in pancreatic cancer according to KRAS mutation and CDKN2A, p53, and SMAD4 expression. J Pathol Clin Res 2023; 9:339-353. [PMID: 37291757 PMCID: PMC10397380 DOI: 10.1002/cjp2.323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 03/30/2023] [Indexed: 06/10/2023]
Abstract
Alterations in KRAS, CDKN2A (p16), TP53, and SMAD4 genes have been major drivers of pancreatic carcinogenesis. The clinical course of patients with pancreatic cancer in relation to these driver alterations has not been fully characterised in large populations. We hypothesised that pancreatic carcinomas with different combinations of KRAS mutation and aberrant expression of CDKN2A, p53, and SMAD4 might show distinctive recurrence patterns and post-operative survival outcomes. To test this hypothesis, we utilised a multi-institutional cohort of 1,146 resected pancreatic carcinomas and assessed KRAS mutations by droplet digital polymerase chain reaction and CDKN2A, p53, and SMAD4 expression by immunohistochemistry. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) for disease-free survival (DFS) and overall survival (OS) were computed according to each molecular alteration and the number of altered genes using the Cox regression models. Multivariable competing risks regression analyses were conducted to assess the associations of the number of altered genes with specific patterns of recurrence. Loss of SMAD4 expression was associated with short DFS (multivariable HR, 1.24; 95% CI, 1.09-1.43) and OS times (multivariable HR, 1.27; 95% CI, 1.10-1.46). Compared to cases with 0-2 altered genes, cases with three and four altered genes had multivariable HRs for OS of 1.28 (95% CI, 1.09-1.51) and 1.47 (95% CI, 1.22-1.78), respectively (ptrend < 0.001). Patients with an increasing number of altered genes were more likely to have short DFS time (ptrend = 0.003) and to develop liver metastasis (ptrend = 0.006) rather than recurrence at local or other distant sites. In conclusion, loss of SMAD4 expression and an increasing number of altered genes were associated with unfavourable outcomes in pancreatic cancer patients. This study suggests that the accumulation of the four major driver alterations can confer a high metastatic potential to the liver, thereby impairing post-operative survival among patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yohei Masugi
- Department of PathologyKeio University School of MedicineTokyoJapan
- Division of Diagnostic PathologyKeio University School of MedicineTokyoJapan
| | - Manabu Takamatsu
- Division of PathologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kensuke Hara
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Yosuke Inoue
- Department of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic MedicineCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Junichi Arita
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Gastroenterological SurgeryAkita University Graduate School of MedicineAkitaJapan
| | - Yuki Hirose
- Department of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Yoshikuni Kawaguchi
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryThe University of Tokyo HospitalTokyoJapan
| | - Atsushi Oba
- Department of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Naoki Sasahira
- Department of Hepato‐Biliary‐Pancreatic MedicineCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Gaku Shimane
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Tsuyoshi Takeda
- Department of Hepato‐Biliary‐Pancreatic MedicineCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sho Uemura
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kiyoshi Hasegawa
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Minoru Kitago
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yu Takahashi
- Department of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kengo Takeuchi
- Division of PathologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Michiie Sakamoto
- Department of PathologyKeio University School of MedicineTokyoJapan
| | | |
Collapse
|
5
|
Krebs N, Klein L, Wegwitz F, Espinet E, Maurer HC, Tu M, Penz F, Küffer S, Xu X, Bohnenberger H, Cameron S, Brunner M, Neesse A, Kishore U, Hessmann E, Trumpp A, Ströbel P, Brekken RA, Ellenrieder V, Singh SK. Axon guidance receptor ROBO3 modulates subtype identity and prognosis via AXL-associated inflammatory network in pancreatic cancer. JCI Insight 2022; 7:154475. [PMID: 35993361 PMCID: PMC9462476 DOI: 10.1172/jci.insight.154475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Metastatic pancreatic cancer (PDAC) has a poor clinical outcome with a 5-year survival rate below 3%. Recent transcriptome profiling of PDAC biopsies has identified 2 clinically distinct subtypes - the "basal-like" (BL) subtype with poor prognosis and therapy resistance compared with the less aggressive and drug-susceptible "classical" (CLA) subtype. However, the mechanistic events and environmental factors that promote the BL subtype identity are not very clear. Using preclinical models, patient-derived xenografts, and FACS-sorted PDAC patient biopsies, we report here that the axon guidance receptor, roundabout guidance receptor 3 (ROBO3), promotes the BL metastatic program via a potentially unique AXL/IL-6/phosphorylated STAT3 (p-STAT3) regulatory axis. RNA-Seq identified a ROBO3-mediated BL-specific gene program, while tyrosine kinase profiling revealed AXL as the key mediator of the p-STAT3 activation. CRISPR/dCas9-based ROBO3 silencing disrupted the AXL/p-STAT3 signaling axis, thereby halting metastasis and enhancing therapy sensitivity. Transcriptome analysis of resected patient tumors revealed that AXLhi neoplastic cells associated with the inflammatory stromal program. Combining AXL inhibitor and chemotherapy substantially restored a CLA phenotypic state and reduced disease aggressiveness. Thus, we conclude that a ROBO3-driven hierarchical network determines the inflammatory and prometastatic programs in a specific PDAC subtype.
Collapse
Affiliation(s)
- Niklas Krebs
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,HI-STEM: The Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Hans Carlo Maurer
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mengyu Tu
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Frederike Penz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | | | - Xingbo Xu
- Department of Cardiology and Pneumology, and
| | | | - Silke Cameron
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Marius Brunner
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,HI-STEM: The Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Philipp Ströbel
- Institute of Pathology,,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research, Departments of Surgery and Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Tu M, Klein L, Espinet E, Georgomanolis T, Wegwitz F, Li X, Urbach L, Danieli-Mackay A, Küffer S, Bojarczuk K, Mizi A, Günesdogan U, Chapuy B, Gu Z, Neesse A, Kishore U, Ströbel P, Hessmann E, Hahn SA, Trumpp A, Papantonis A, Ellenrieder V, Singh SK. TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. NATURE CANCER 2021; 2:1185-1203. [PMID: 35122059 DOI: 10.1038/s43018-021-00258-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
Large-scale genomic profiling of pancreatic cancer (PDAC) has revealed two distinct subtypes: 'classical' and 'basal-like'. Their variable coexistence within the stromal immune microenvironment is linked to differential prognosis; however, the extent to which these neoplastic subtypes shape the stromal immune landscape and impact clinical outcome remains unclear. By combining preclinical models, patient-derived xenografts, as well as FACS-sorted PDAC patient biopsies, we show that the basal-like neoplastic state is sustained via BRD4-mediated cJUN/AP1 expression, which induces CCL2 to recruit tumor necrosis factor (TNF)-α-secreting macrophages. TNF-α+ macrophages force classical neoplastic cells into an aggressive phenotypic state via lineage reprogramming. Integration of ATAC-, ChIP- and RNA-seq data revealed distinct JUNB/AP1 (classical) and cJUN/AP1 (basal-like)-driven regulation of PDAC subtype identity. Pharmacological inhibition of BRD4 led to suppression of the BRD4-cJUN-CCL2-TNF-α axis, restoration of classical subtype identity and a favorable prognosis. Hence, patient-tailored therapy for a cJUNhigh/TNF-αhigh subtype is paramount in overcoming highly inflamed and aggressive PDAC states.
Collapse
Affiliation(s)
- Mengyu Tu
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbh), Heidelberg, Germany
| | | | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaojuan Li
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Laura Urbach
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Adi Danieli-Mackay
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kamil Bojarczuk
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Ufuk Günesdogan
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Zuguang Gu
- Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany
- Division of Cancer Epigenomics, DKFZ, Heidelberg, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephan A Hahn
- Faculty of Medicine, Department of Molecular GI Oncology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbh), Heidelberg, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
7
|
Zhou Z, Ma Z, Li Z, Zhuang H, Liu C, Gong Y, Huang S, Zhang C, Hou B. CMTM3 Overexpression Predicts Poor Survival and Promotes Proliferation and Migration in Pancreatic Cancer. J Cancer 2021; 12:5797-5806. [PMID: 34475993 PMCID: PMC8408105 DOI: 10.7150/jca.57082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/10/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Recent evidence has shown that CKLF-like MARVEL transmembrane domain containing 3 (CMTM3) promoted carcinogenesis and tumor progression in a variety of cancer types. The goal of our study is to investigate the association between CMTM3 and pancreatic cancer (PC). Materials and Methods: In current study, data from public databases was used to analyze CMTM3 expression in PC. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were used to investigate CMTM3 expression and determine its clinical significance in PC. Then CMTM3 promoting PC aggressiveness was demonstrated in vitro experiments by cell proliferation and migration assay. Functional and pathway enrichment analyses were performed to evaluate the potential role of CMTM3 in PC. Results: Results of qRT-PCR and IHC revealed that CMTM3 was significantly overexpressed in PC tissues. High CMTM3 expression was an independent risk factor for poor prognosis of PC patients. Overexpression of CMTM3 was associated with poor overall survival (P-value =0.031) and disease-free survival (P-value =0.0047) in the TCGA cohort. Functional and pathway enrichment analyses showed that CMTM3 were enriched in "Regulation of cell proliferation and regulation of cell differentiation, cell morphogenesis, regulation of cell differentiation, Hedgehog signaling pathway, Wnt signaling pathway, ECM-receptor interaction and pathways in cancer". In PC cell lines, CCK8, clone formation and transwell assays showed that CMTM3 knockdown inhibited cells proliferation and migration. Conclusion: CMTM3 was overexpressed and promotes tumor aggressiveness in PC. Our findings provided a novel therapeutic target for PC.
Collapse
Affiliation(s)
- Zixuan Zhou
- South China University of Technology School of Medicine, Guangzhou 510006,Guangdong Province, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Shantou University of Medical College, Shantou 515000, China
| | - Zhenchong Li
- South China University of Technology School of Medicine, Guangzhou 510006,Guangdong Province, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Hongkai Zhuang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Shantou University of Medical College, Shantou 515000, China
| | - Chunsheng Liu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Shantou University of Medical College, Shantou 515000, China
| | - Yuanfeng Gong
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shanzhou Huang
- South China University of Technology School of Medicine, Guangzhou 510006,Guangdong Province, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- ✉ Corresponding author: Baohua Hou, Tel: 13609006510, E-mail: ; Chuanzhao Zhang, Tel: 15102099746, E-mail: ; Shanzhou Huang, Tel: 13928842869, E-mail:
| | - Chuanzhao Zhang
- South China University of Technology School of Medicine, Guangzhou 510006,Guangdong Province, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- ✉ Corresponding author: Baohua Hou, Tel: 13609006510, E-mail: ; Chuanzhao Zhang, Tel: 15102099746, E-mail: ; Shanzhou Huang, Tel: 13928842869, E-mail:
| | - Baohua Hou
- South China University of Technology School of Medicine, Guangzhou 510006,Guangdong Province, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- ✉ Corresponding author: Baohua Hou, Tel: 13609006510, E-mail: ; Chuanzhao Zhang, Tel: 15102099746, E-mail: ; Shanzhou Huang, Tel: 13928842869, E-mail:
| |
Collapse
|
8
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
9
|
Deng Y, Zhou T, Wu JL, Chen Y, Shen CY, Zeng M, Chen T, Zhang XM. The impact of molecular classification based on the transcriptome of pancreatic cancer: from bench to bedside. CHINESE JOURNAL OF ACADEMIC RADIOLOGY 2020; 3:67-75. [DOI: 10.1007/s42058-020-00037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 07/25/2024]
|