1
|
Jeong H, Kim SH, Kim J, Jeon D, Uhm C, Oh H, Cho K, Park IH, Oh J, Kim JJ, Jeong SH, Park JH, Park JW, Yun JW, Seo JY, Shin JS, Goldenring JR, Seong JK, Nam KT. Post-COVID-19 Effects on Chronic Gastritis and Gastric Cellular and Molecular Characteristics in Male Mice. Cell Mol Gastroenterol Hepatol 2025:101511. [PMID: 40157534 DOI: 10.1016/j.jcmgh.2025.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUNDS & AIMS Since the Omicron variant emerged as a major severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, COVID-19-associated mortality has decreased remarkably. Nevertheless, patients with a history of SARS-CoV-2 infection have been suffering from an aftereffect commonly known as 'long COVID,' affecting diverse organs. However, the effect of SARS-CoV-2 on gastric cells and disease progression was not previously known. We aimed to investigate whether SARS-CoV-2 infection affects stomach cells and if post-COVID-19 conditions can lead to severe gastric disease. METHODS Stomach specimens obtained from male K18-hACE2 mice 7 days after SARS-CoV-2 infection were subjected to a transcriptomic analysis for molecular profiling. To investigate the putative role of SARS-CoV-2 in gastric carcinogenesis, K18-hACE2 mice affected by nonlethal COVID-19 were also inoculated with Helicobacter pylori SS1. RESULTS Despite the lack of viral dissemination and pathologic traits in the stomach, SARS-CoV-2 infection caused dramatic changes to the molecular profile and some immune subsets in this organ. Notably, the gene sets related to metaplasia and gastric cancer were significantly enriched after viral infection. As a result, chronic inflammatory responses and preneoplastic transitions were promoted in these mice. CONCLUSION SARS-CoV-2 infection indirectly leads to profound and post-acute COVID-19 alterations in the stomach at the cellular and molecular levels, resulting in adverse outcomes following co-infection with SARS-CoV-2 and H. pylori. Our results show that 2 prevalent pathogens of humans elicit a negative synergistic effect and provide evidence of the risk of severe chronic gastritis in the post-COVID-19 era.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sung-Hee Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiseon Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Donghun Jeon
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Chanyang Uhm
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Heeju Oh
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyungrae Cho
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - In Ho Park
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jooyeon Oh
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Jin Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Ho Jeong
- Gyeongsang National University College of Medicine, Seoul, South Korea
| | - Ji-Ho Park
- Gyeongsang National University College of Medicine, Seoul, South Korea
| | - Jun Won Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun-Young Seo
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - James R Goldenring
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, Brain Korea 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, South Korea; BIO-MAX Institute, Seoul National University, Seoul, South Korea; Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul, South Korea.
| | - Ki Taek Nam
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Tan R, Zhou S, Sun M, Liu Y, Ni X, He J, Guo G, Liu K. Modeling and optimization of culture media for recombinant Helicobacter pylori vaccine antigen HpaA. Front Bioeng Biotechnol 2024; 12:1499940. [PMID: 39698188 PMCID: PMC11652157 DOI: 10.3389/fbioe.2024.1499940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction H. pylori (Helicobacter pylori) infection represents a significant global health concern, exacerbated by the emergence of drug-resistant strains resulting from conventional antibiotic treatments. Consequently, the development of vaccines with both preventive and therapeutic properties has become crucial in addressing H. pylori infections. The H. pylori adhesin protein HpaA has demonstrated strong immunogenicity across various adjuvants and dosage forms, positioning it as a key candidate antigen for recombinant subunit vaccines against H. pylori. Optimizing fermentation culture conditions is an effective strategy to enhance product yield and lower production costs. However, to date, there has been no systematic investigation into methods for improving the fermentation yield of HpaA. Enhancing the fermentation medium to increase HpaA yield holds significant potential for application and economic benefits in the prevention and detection of H. pylori infection. Methods To achieve a stable and high-yielding H. pylori vaccine antigen HpaA, this study constructed recombinant Escherichia coli expressing HpaA. The impact of fermentation medium components on the rHpaA yield was assessed using a one-factor-at-a-time approach alongside Plackett-Burman factorial experiments. Optimal conditions were effectively identified through response surface methodology (RSM) and artificial neural network (ANN) statistical computational models. The antigenicity and immunogenicity of the purified rHpaA were validated through immunization of mice, followed by Western Blot analysis and serum IgG ELISA quantification. Results Glucose, yeast extract, yeast peptone, NH4Cl and CaCl2 all contributed to the production of rHpaA, with glucose, yeast extract, and NH4Cl demonstrating particularly significant effects. The artificial neural network linked genetic algorithm (ANN-GA) model exhibited superior predictive accuracy, achieving a rHpaA yield of 0.61 g/L, which represents a 93.2% increase compared to the initial medium. Animal immunization experiments confirmed that rHpaA possesses good antigenicity and immunogenicity. Discussion This study pioneers the statistical optimization of culture media to enhance rHpaA production, thereby supporting its large-scale application in H. pylori vaccines. Additionally, it highlights the advantages of the ANN-GA approach in bioprocess optimization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Guo
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Kaiyun Liu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Hakami ZH. Biomarker discovery and validation for gastrointestinal tumors: A comprehensive review of colorectal, gastric, and liver cancers. Pathol Res Pract 2024; 255:155216. [PMID: 38401376 DOI: 10.1016/j.prp.2024.155216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Gastrointestinal (GI) malignancies, encompassing gastric, hepatic, colonic, and rectal cancers, are prevalent forms of cancer globally and contribute substantially to cancer-related mortality. Although there have been improvements in methods for diagnosing and treating GI cancers, the chances of survival for these types of cancers are still extremely low. According to the World Cancer Research International Fund's most recent figures, stomach cancer was responsible for roughly one million deaths worldwide in 2020. This emphasizes the importance of developing more effective tools for detecting, diagnosing, and predicting the outcome of these cancers at an early stage. Biomarkers, quantitative indications of biological processes or disease states, have emerged as promising techniques for enhancing the diagnosis and prognosis of GI malignancies. Recently, there has been a considerable endeavor to discover and authenticate biomarkers for various GI cancers by the utilization of diverse methodologies, including genomics, proteomics, and metabolomics. This review provides a thorough examination of the current state of biomarker research in the field of gastrointestinal malignancies, with a specific emphasis on colorectal, stomach, and liver cancers. A thorough literature search was performed on prominent databases such as PubMed, Scopus, and Web of Science to find pertinent papers published until November, 2023 for the purpose of compiling this review. The diverse categories of biomarkers, encompassing genetic, epigenetic, and protein-based biomarkers, and their potential utility in the fields of diagnosis, prognosis, and treatment selection, are explored. Recent progress in identifying and confirming biomarkers, as well as the obstacles that persist in employing biomarkers in clinical settings are emphasized. The utilization of biomarkers in GI cancers has significant potential in enhancing patient outcomes. Ongoing research is expected to uncover more efficient biomarkers for the diagnosis and prognosis of these cancers.
Collapse
Affiliation(s)
- Zaki H Hakami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Jazan University, Jazan 45142, Saudi Arabia.
| |
Collapse
|
4
|
Wei Y, Gao L, Yang X, Xiang X, Yi C. Inflammation-Related Genes Serve as Prognostic Biomarkers and Involve in Immunosuppressive Microenvironment to Promote Gastric Cancer Progression. Front Med (Lausanne) 2022; 9:801647. [PMID: 35372408 PMCID: PMC8965837 DOI: 10.3389/fmed.2022.801647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is a typical inflammatory-related malignant tumor which is closely related to helicobacter pylori infection. Tumor inflammatory microenvironment plays a crucial role in tumor progression and affect the clinical benefit from immunotherapy. In recent years, immunotherapy for gastric cancer has achieved promising outcomes, but not all patients can benefit from immunotherapy due to tumor heterogeneity. In our study, we identified 29 differentially expressed and prognostic inflammation-related genes in GC and normal samples. Based on those genes, we constructed a prognostic model using a least absolute shrinkage and selection operator (LASSO) algorithm, which categorized patients with GC into two groups. The high-risk group have the characteristics of "cold tumor" and have a poorer prognosis. In contrast, low-risk group was "hot tumor" and had better prognosis. Targeting inflammatory-related genes and remodeling tumor microenvironment to turn "cold tumor" into "hot tumor" may be a promising solution to improve the efficacy of immunotherapy for patients with GC.
Collapse
Affiliation(s)
- Yuanfeng Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Limin Gao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Xiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Huang Q, Zheng X, Jiao Y, Lei Y, Li X, Bi F, Guo F, Wang G, Liu M. A Distinct Clinicopathological Feature and Prognosis of Young Gastric Cancer Patients Aged ≤ 45 Years Old. Front Oncol 2021; 11:674224. [PMID: 34513668 PMCID: PMC8426597 DOI: 10.3389/fonc.2021.674224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose The aim of this retrospective study was to probe into clinicopathological features and prognosis of early-onset gastric cancer (EOGC) patients aged ≤ 45 years old. Methods This study selected 154 young gastric cancer patients aged ≤ 45 years old and 158 elderly gastric cancer patients aged > 50 years old admitted to West China Hospital of Sichuan University in 2009-2019 as the research object. These patients were further divided into two groups according to whether tumor can be resected radically. The following parameters were analyzed: age, gender, helicobacter pylori (HP) infection status, Her-2 status, pathological type and stage, chemotherapy, tumor differentiation degree, overall survival (OS). Results More than 3,000 patients with gastric carcinoma were screened, and 154 young gastric cancer patients aged ≤ 45 years old were identified as EOGC. Among them, the number of female patients in EOGC group was significantly higher than that of males, accounting for 63.6%. In addition, EOGC were associated with diffuse Laur´en type and poorly differentiated tumors. Interestingly, the Kaplan-Meier method showed that the OS of unresectable EOGC group was significantly lower than that of unresectable LOGC group (P = 0.0005) and chemotherapy containing paclitaxel tended to be more effective in the young people (P = 0.0511). Nevertheless, there was no significant difference in OS between young and elderly patients with gastric cancer in the radical resection group (P = 0.3881). Conclusion EOGC patients have a worse prognosis than late-onset gastric cancer (LOGC) patients with advanced unresectable gastric cancer. Palliative surgery or chemotherapy containing paclitaxel may improve the OS of unresectable young individuals with gastric cancer. Additional randomized controlled trials are required for guiding clinical practice.
Collapse
Affiliation(s)
- Qian Huang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiufeng Zheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Jiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Yanna Lei
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoying Li
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Bi
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|