1
|
Okamoto N, Egami Y, Sugino A, Kobayashi N, Abe M, Osuga M, Nohara H, Kawanami S, Kawamura A, Ukita K, Yasumoto K, Matsunaga-Lee Y, Yano M, Nishino M. Impact of Prereperfusion Left Ventricle Unloading on ST-Segment Elevation Myocardial Infarction According to the Onset-to-Unloading Time. Am J Cardiol 2025; 239:43-50. [PMID: 39674439 DOI: 10.1016/j.amjcard.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/03/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
It is unclear whether the impact of prereperfusion unloading on improving survival is sustained throughout all periods from the onset in patients with ST-segment elevation myocardial infarction. This study is a post hoc analysis of the Japanese registry for Pectaneous Ventricular Assist Device (J-PVAD) registry. In all patients registered in J-PVAD between February 2020 and December 2021, patients with ST-segment elevation myocardial infarction complicated with cardiogenic shock and treated with Impella support alone were selected. A total of 2 cohorts were provided based on whether the onset-to-unloading time was <6 hours. The patients were divided into 2 groups according to prereperfusion or postreperfusion unloading in each cohort. The primary outcome was the 30-day survival rate. The independent factors of survival were identified with a multivariable Cox proportional hazard regression analysis after adjusting for the variables that were statistically significant in the univariable analysis. Patients with prereperfusion unloading had a significantly higher 30-day survival rate than patients with postreperfusion unloading (91% vs 67%, p <0.01) in the cohort with an onset-to-unloading time ≥6 hours, whereas patients with prereperfusion or postreperfusion unloading had similar 30-day survival rates (88% vs 91%, p = 0.64) in the cohort with an onset-to-unloading time <6 hours. A multivariable analysis revealed that prereperfusion use of Impella was an independent factor of survival (hazard ratio 0.249, 95% confidence interval 0.070 to 0.889, p = 0.03) in the onset-to-unloading time ≥6 hours cohort. In conclusion, prereperfusion left ventricular unloading could be a crucial treatment to improve the short-term survival rate when the onset-to-left ventricular unloading time was ≥6 hours.
Collapse
Affiliation(s)
| | - Yasuyuki Egami
- Division of Cardiology, Osaka Rosai Hospital, Osaka, Japan
| | - Ayako Sugino
- Division of Cardiology, Osaka Rosai Hospital, Osaka, Japan
| | | | - Masaru Abe
- Division of Cardiology, Osaka Rosai Hospital, Osaka, Japan
| | - Mizuki Osuga
- Division of Cardiology, Osaka Rosai Hospital, Osaka, Japan
| | - Hiroaki Nohara
- Division of Cardiology, Osaka Rosai Hospital, Osaka, Japan
| | | | - Akito Kawamura
- Division of Cardiology, Osaka Rosai Hospital, Osaka, Japan
| | - Kohei Ukita
- Division of Cardiology, Osaka Rosai Hospital, Osaka, Japan
| | - Koji Yasumoto
- Division of Cardiology, Osaka Rosai Hospital, Osaka, Japan
| | | | - Masamichi Yano
- Division of Cardiology, Osaka Rosai Hospital, Osaka, Japan
| | - Masami Nishino
- Division of Cardiology, Osaka Rosai Hospital, Osaka, Japan.
| |
Collapse
|
2
|
Buske M, Desch S, Heusch G, Rassaf T, Eitel I, Thiele H, Feistritzer HJ. Reperfusion Injury: How Can We Reduce It by Pre-, Per-, and Postconditioning. J Clin Med 2023; 13:159. [PMID: 38202166 PMCID: PMC10779793 DOI: 10.3390/jcm13010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
While early coronary reperfusion via primary percutaneous coronary intervention (pPCI) is established as the most efficacious therapy for minimizing infarct size (IS) in acute ST-elevation myocardial infarction (STEMI), the restoration of blood flow also introduces myocardial ischemia-reperfusion injury (IRI), leading to cardiomyocyte death. Among diverse methods, ischemic conditioning (IC), achieved through repetitive cycles of ischemia and reperfusion, has emerged as the most promising method to mitigate IRI. IC can be performed by applying the protective stimulus directly to the affected myocardium or indirectly to non-affected tissue, which is known as remote ischemic conditioning (RIC). In clinical practice, RIC is often applied by serial inflations and deflations of a blood pressure cuff on a limb. Despite encouraging preclinical studies, as well as clinical studies demonstrating reductions in enzymatic IS and myocardial injury on imaging, the observed impact on clinical outcome has been disappointing so far. Nevertheless, previous studies indicate a potential benefit of IC in high-risk STEMI patients. Additional research is needed to evaluate the impact of IC in such high-risk cohorts. The objective of this review is to summarize the pathophysiological background and preclinical and clinical data of IRI reduction by IC.
Collapse
Affiliation(s)
- Maria Buske
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, 04289 Leipzig, Germany; (M.B.); (S.D.)
| | - Steffen Desch
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, 04289 Leipzig, Germany; (M.B.); (S.D.)
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45122 Essen, Germany;
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany;
| | - Ingo Eitel
- Medical Clinic II, Clinic for Cardiology, Angiology and Intensive Care Medicine, University Heart Center Lübeck, 23538 Lübeck, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23538 Lübeck, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, 04289 Leipzig, Germany; (M.B.); (S.D.)
| | - Hans-Josef Feistritzer
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, 04289 Leipzig, Germany; (M.B.); (S.D.)
| |
Collapse
|
3
|
Anttila T, Herajärvi J, Laaksonen H, Mustonen C, Honkanen HP, Y Dimova E, Piuhola J, Koivunen P, Juvonen T, Anttila V. Remote ischemic preconditioning and hypoxia-induced biomarkers in acute myocardial infarction: study on a porcine model. SCAND CARDIOVASC J 2023; 57:2251730. [PMID: 37641930 DOI: 10.1080/14017431.2023.2251730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Objectives. Remote ischemic preconditioning (RIPC) mitigates acute myocardial infarction (AMI). We hypothesized that RIPC reduces the size and severity of AMI and explored molecular mechanisms behind this phenomenon. Design. In two series of experiments, piglets underwent 60 min of the circumflex coronary artery occlusion, resulting in AMI. Piglets were randomly assigned into the RIPC groups (n = 7 + 7) and the control groups (n = 7 + 7). The RIPC groups underwent four 5-min hind limb ischemia-reperfusion cycles before AMI. In series I, the protective efficacy of RIPC was investigated by using biomarkers and echocardiography with a follow-up of 24 h. In series II, the heart of each piglet was harvested for TTC-staining to measure infarct size. Muscle biopsies were collected from the hind limb to explore molecular mechanisms of RIPC using qPCR and Western blot analysis. Results. The levels of CK-MBm (p = 0.032) and TnI (p = 0.007) were lower in the RIPC group. Left ventricular ejection fraction in the RIPC group was greater at the end of the follow-up. The myocardial infarct size in the RIPC group was smaller (p = 0.033). Western blot indicated HIF1α stabilization in the skeletal muscle of the RIPC group. PCR analyses showed upregulation of the HIF target mRNAs for glucose transporter (GLUT1), glucose transporter 4 (GLUT4), phosphofructokinase 1 (PFK1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), enolase 1 (ENO1), lactate dehydrogenase (LDHA) and endothelial nitric oxidate synthase (eNOS). Conclusions. Biochemical, physiologic, and histologic evidence confirms that RIPC decreases the size of AMI. The HIF pathway is likely involved in the mechanism of the RIPC.
Collapse
Affiliation(s)
- Tuomas Anttila
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Johanna Herajärvi
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Henna Laaksonen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Caius Mustonen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Hannu-Pekka Honkanen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Jarkko Piuhola
- Department of Cardiology, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Tatu Juvonen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Vesa Anttila
- Heart Center, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 2023; 67:102894. [PMID: 37839355 PMCID: PMC10590874 DOI: 10.1016/j.redox.2023.102894] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Bell
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Edoardo Bertero
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genova, Genova, Italy
| | - Hans-Erik Botker
- Department of Cardiology, Institute for Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - James Downey
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, Heart Centre, Charterhouse Square, London, United Kingdom
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, National Heart Research Institute Singapore, National Heart Centre, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, and CIBERCV, Madrid, Spain
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig -Universität, Giessen, Germany
| | - Frank Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Fabio Di Lisa
- Dipartimento di Scienze Biomediche, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|
5
|
Zhao ZZ, Li E, Li XJ, Guo Q, Shi QB, Li MW. Effects of remote ischemic preconditioning on coronary blood flow and microcirculation. BMC Cardiovasc Disord 2023; 23:404. [PMID: 37592218 PMCID: PMC10433538 DOI: 10.1186/s12872-023-03419-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
This study aimed to determine the effect of short-term remote ischemic preconditioning (RIPC) on coronary blood flow and microcirculation function using the quantitative flow ratio (QFR) and index of microcirculatory resistance (IMR). We randomly divided 129 patients undergoing coronary angiography (CAG) into RIPC and control groups. Following the first CAG, we randomly divided the patients further into the unilateral upper limb and lower limb groups for four cycles of ischemia/reperfusion circulation; subsequently, we performed the second CAG. During each CAG, contrast-flow QFR (cQFR), fixed-flow QFR (fQFR), and IMR (in patients with cardiac syndrome X) were calculated and compared. We measured 253 coronary arteries in 129 patients. Compared to the control group, the average cQFR of the RIPC group increased significantly after RIPC. Additionally, 23 patients with cardiac syndrome X (IMR > 30) were included in this study. Compared to the control group, IMR and the difference between cQFR and fQFR (cQFR-fQFR) both decreased significantly after receiving RIPC. The application of RIPC can increase coronary blood flow and improve coronary microcirculation function.
Collapse
Affiliation(s)
- Zhen-Zhou Zhao
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, 450003, Henan Province, China
| | - En Li
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, 450003, Henan Province, China
| | - Xue-Jie Li
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, 450003, Henan Province, China
| | - Quan Guo
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, 450003, Henan Province, China
| | - Qing-Bo Shi
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, 450003, Henan Province, China
| | - Mu-Wei Li
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, 450003, Henan Province, China.
| |
Collapse
|
6
|
Remote ischemic conditioning avoids the development of intestinal damage after ischemia reperfusion by reducing intestinal inflammation and increasing intestinal regeneration. Pediatr Surg Int 2021; 37:333-337. [PMID: 33555396 DOI: 10.1007/s00383-020-04831-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
AIM OF THE STUDY Midgut volvulus is a potentially life-threatening condition which is based on intestinal ischemia and reperfusion (I/R) injury. Remote ischemia conditioning (RIC) applied to a limb can protect distant organs such as heart and kidney. The aims of this study were to investigate the effect of RIC on a model of midgut volvulus and to explore its underlying mechanism of action. METHODS Six-weeks old C57BL/6 mice were studied: (a) sham (n = 4): laparotomy alone. (b) Intestinal I/R injury (n = 5): occlusion of the superior mesenteric artery (SMA) for 45 min followed by reperfusion. (c) Intestinal I/R (as in group above) with RIC immediately after reperfusion (n = 5). RIC consisted of 4 cycles of 5 min hind limb ischemia followed by 5 min reperfusion. 24-h after laparotomy, animals were euthanized, and the small intestine (same distance from cecum) was harvested. The intestine was examined for inflammatory cytokines (TNF-α and IL-6), epithelial proliferation marker Ki67 and stem cell marker Lgr5 expression. MAIN RESULTS Compared to sham, the small intestine of IR mice had more intestinal damage, increased expression of inflammatory cytokines, decreased intestinal proliferation and stem cell activity. RIC significantly counteracted all these changes. CONCLUSIONS Remote ischemia conditioning avoids intestinal damage due to I/R injury. This beneficial effect is associated with decreased intestinal inflammation and enhanced intestinal regeneration. This study implicates that RIC is a novel non-invasive intervention to reduce the intestinal damage occurring in midgut volvulus.
Collapse
|
7
|
Bøtker HE. Searching myocardial rescue through intermittent upper arm occlusion and lizard saliva. Basic Res Cardiol 2021; 116:5. [PMID: 33495904 DOI: 10.1007/s00395-021-00843-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/26/2023]
Affiliation(s)
- Hans Erik Bøtker
- Faculty of Health, Aarhus University, Vennelyst Boulevard 4, 8000, Aarhus C, Denmark.
| |
Collapse
|
8
|
Kleinbongard P, Bøtker HE, Ovize M, Hausenloy DJ, Heusch G. Co-morbidities and co-medications as confounders of cardioprotection-Does it matter in the clinical setting? Br J Pharmacol 2020; 177:5252-5269. [PMID: 31430831 PMCID: PMC7680006 DOI: 10.1111/bph.14839] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/26/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
The translation of cardioprotection from robust experimental evidence to beneficial clinical outcome for patients suffering acute myocardial infarction or undergoing cardiovascular surgery has been largely disappointing. The present review attempts to critically analyse the evidence for confounders of cardioprotection in patients with acute myocardial infarction and in patients undergoing cardiovascular surgery. One reason that has been proposed to be responsible for such lack of translation is the confounding of cardioprotection by co-morbidities and co-medications. Whereas there is solid experimental evidence for such confounding of cardioprotection by single co-morbidities and co-medications, the clinical evidence from retrospective analyses of the limited number of clinical data is less robust. The best evidence for interference of co-medications is that for platelet inhibitors to recruit cardioprotection per se and thus limit the potential for further protection from myocardial infarction and for propofol anaesthesia to negate the protection from remote ischaemic conditioning in cardiovascular surgery. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular CenterUniversity of Essen Medical SchoolEssenGermany
| | - Hans Erik Bøtker
- Department of CardiologyAarhus University Hospital SkejbyAarhusDenmark
| | - Michel Ovize
- INSERM U1060, CarMeN Laboratory, Université de Lyon and Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de LyonLyonFrance
| | - Derek J. Hausenloy
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
- National Heart Research Institute SingaporeNational Heart CentreSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Research and DevelopmentThe National Institute of Health Research University College London Hospitals Biomedical Research CentreLondonUK
- Tecnologico de MonterreyCentro de Biotecnologia‐FEMSAMonterreyNuevo LeonMexico
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular CenterUniversity of Essen Medical SchoolEssenGermany
| |
Collapse
|
9
|
Koike Y, Li B, Ganji N, Zhu H, Miyake H, Chen Y, Lee C, Janssen Lok M, Zozaya C, Lau E, Lee D, Chusilp S, Zhang Z, Yamoto M, Wu RY, Inoue M, Uchida K, Kusunoki M, Delgado-Olguin P, Mertens L, Daneman A, Eaton S, Sherman PM, Pierro A. Remote ischemic conditioning counteracts the intestinal damage of necrotizing enterocolitis by improving intestinal microcirculation. Nat Commun 2020; 11:4950. [PMID: 33009377 PMCID: PMC7532542 DOI: 10.1038/s41467-020-18750-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease of premature infants with high mortality rate, indicating the need for precision treatment. NEC is characterized by intestinal inflammation and ischemia, as well derangements in intestinal microcirculation. Remote ischemic conditioning (RIC) has emerged as a promising tool in protecting distant organs against ischemia-induced damage. However, the effectiveness of RIC against NEC is unknown. To address this gap, we aimed to determine the efficacy and mechanism of action of RIC in experimental NEC. NEC was induced in mouse pups between postnatal day (P) 5 and 9. RIC was applied through intermittent occlusion of hind limb blood flow. RIC, when administered in the early stages of disease progression, decreases intestinal injury and prolongs survival. The mechanism of action of RIC involves increasing intestinal perfusion through vasodilation mediated by nitric oxide and hydrogen sulfide. RIC is a viable and non-invasive treatment strategy for NEC. Necrotizing enterocolitis (NEC) is one of the most lethal gastrointestinal emergencies in neonates needing precision treatment. Here the authors show that remote ischemic conditioning is a non-invasive therapeutic method that enhances blood flow in the intestine, reduces damage, and improves NEC outcome.
Collapse
Affiliation(s)
- Yuhki Koike
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Bo Li
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Niloofar Ganji
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Haitao Zhu
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hiromu Miyake
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yong Chen
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maarten Janssen Lok
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carlos Zozaya
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ethan Lau
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dorothy Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sinobol Chusilp
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zhen Zhang
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Masaya Yamoto
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Richard Y Wu
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mikihiro Inoue
- Departments of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Keiichi Uchida
- Departments of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masato Kusunoki
- Departments of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Paul Delgado-Olguin
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Heart & Stroke Richard Lewar Centre of Excellence, Toronto, ON, Canada
| | - Luc Mertens
- The Labatt Family Heart Center, Cardiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Alan Daneman
- Department of Diagnostic Imaging, Division of Nuclear Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Philip M Sherman
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, ON, Canada.,Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Agostino Pierro
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada. .,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Giblett JP, Bulluck H. Cardioprotection for Acute MI in Light of the CONDI2/ERIC-PPCI Trial: New Targets Needed. ACTA ACUST UNITED AC 2020; 15:e13. [PMID: 32944081 PMCID: PMC7479528 DOI: 10.15420/icr.2020.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Protection against ischaemia-reperfusion injury after revascularisation in acute myocardial infarction remains an enigma. Many targets have been identified, but after the failure of the recent Effect of Remote Ischaemic Conditioning on Clinical Outcomes in ST-elevation Myocardial Infarction Patients Undergoing Primary Percutaneous Coronary Intervention (CONDI2/ERIC-PPCI) trial to show translation to clinical benefit, there is still no pharmacological or mechanical strategy that has translated to clinical practice. This article addresses the results of the CONDI2/ERIC-PPCI trial in the context of previous studies of ischaemic conditioning, and then considers the prospects for other potential targets of cardioprotection. Finally, the authors examine the pitfalls and challenges in trial design for future investigation of cardioprotective strategies. In particular, this article highlights the need for careful endpoint and patient selection, as well as the need to pay attention to the biology of cardioprotection during the study.
Collapse
Affiliation(s)
- Joel P Giblett
- Department of Cardiology, Liverpool Heart and Chest Hospital Liverpool, UK
| | | |
Collapse
|
11
|
Bøtker HE. The Future of Cardioprotection-Pointing Toward Patients at Elevated Risk as the Target Populations. J Cardiovasc Pharmacol Ther 2020; 25:487-493. [PMID: 32597205 DOI: 10.1177/1074248420937871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Translation of the cardioprotective effect by pharmacological and mechanical conditioning therapies into improvement of clinical outcome for the patients has been disappointing. Confounding factors like comorbidity and comedications may explain some of the loss in translation. However, the substantial improvement of outcome in disease states involving ischemia-reperfusion injury, that is, planned cardiac surgery, elective percutaneous coronary intervention, and even primary percutaneous coronary intervention for ST-segment myocardial infarction (STEMI), is the most plausible explanation for the missed demonstration of a clinical benefit. Remote ischemic conditioning has demonstrated consistent cardioprotective effect in experimental and in clinical proof-of-concept studies. As an adjunctive cardioprotective treatment beyond reperfusion, remote ischemic conditioning should address target populations at risk of extensive tissue damage, including patients who experience complications, which may induce profound myocardial ischemia in relation to cardiac surgery or elective percutaneous coronary intervention. Moreover, patients with STEMI and predictable impaired clinical outcome due to delayed hospital admission, high Killip class, cardiogenic shock, and cardiac arrest remain target groups. For high-risk patients, daily remote ischemic conditioning or the corollary of blood flow-restricted exercise may be alternative cardioprotective options during postoperative and post-myocardial infarct rehabilitation.
Collapse
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, 11297Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Hausenloy DJ, Ntsekhe M, Yellon DM. A future for remote ischaemic conditioning in high-risk patients. Basic Res Cardiol 2020; 115:35. [PMID: 32335728 DOI: 10.1007/s00395-020-0794-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Mpiko Ntsekhe
- Division of Cardiology, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town South Africa, Cape Town, South Africa
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK.
| |
Collapse
|
13
|
Rossello X, Rodriguez-Sinovas A, Vilahur G, Crisóstomo V, Jorge I, Zaragoza C, Zamorano JL, Bermejo J, Ordoñez A, Boscá L, Vázquez J, Badimón L, Sánchez-Margallo FM, Fernández-Avilés F, Garcia-Dorado D, Ibanez B. CIBER-CLAP (CIBERCV Cardioprotection Large Animal Platform): A multicenter preclinical network for testing reproducibility in cardiovascular interventions. Sci Rep 2019; 9:20290. [PMID: 31889088 PMCID: PMC6937304 DOI: 10.1038/s41598-019-56613-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Despite many cardioprotective interventions have shown to protect the heart against ischemia/reperfusion injury in the experimental setting, only few of them have succeeded in translating their findings into positive proof-of-concept clinical trials. Controversial and inconsistent experimental and clinical evidence supports the urgency of a disruptive paradigm shift for testing cardioprotective therapies. There is a need to evaluate experimental reproducibility before stepping into the clinical arena. The CIBERCV (acronym for Spanish network-center for cardiovascular biomedical research) has set up the "Cardioprotection Large Animal Platform" (CIBER-CLAP) to perform experimental studies testing the efficacy and reproducibility of promising cardioprotective interventions based on a pre-specified design and protocols, randomization, blinding assessment and other robust methodological features. Our first randomized, control-group, open-label blinded endpoint experimental trial assessing local ischemic preconditioning (IPC) in a pig model of acute myocardial infarction (n = 87) will be carried out in three separate sets of experiments performed in parallel by three laboratories. Each set aims to assess: (A) CMR-based outcomes; (B) histopathological-based outcomes; and (C) protein-based outcomes. Three core labs will assess outcomes in a blinded fashion (CMR imaging, histopathology and proteomics) and 2 methodological core labs will conduct the randomization and statistical analysis.
Collapse
Affiliation(s)
- Xavier Rossello
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Antonio Rodriguez-Sinovas
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratorio de Investigación en Enfermedades Cardiovasculares, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Gemma Vilahur
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Programa ICCC-Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Verónica Crisóstomo
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
| | - Inmaculada Jorge
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Zaragoza
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Servicio de Cardiologia, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
- Universidad Francisco de Vitoria, Madrid, Spain
| | - José L Zamorano
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Servicio de Cardiologia, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
| | - Javier Bermejo
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón and Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Ordoñez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Lisardo Boscá
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lina Badimón
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Programa ICCC-Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Francisco M Sánchez-Margallo
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
| | - Francisco Fernández-Avilés
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón and Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - David Garcia-Dorado
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratorio de Investigación en Enfermedades Cardiovasculares, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Borja Ibanez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain.
| |
Collapse
|
14
|
Lobo M, Ibanez B. Take a deep (nitric oxide) breath and follow the reverse translational research pathway. Eur Heart J 2019; 39:2726-2729. [PMID: 29945192 DOI: 10.1093/eurheartj/ehy355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Manuel Lobo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.,CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
15
|
Affiliation(s)
- Xavier Rossello
- From the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Translational Laboratory for Cardiovascular Imaging and Therapy, Madrid, Spain (X.R., B.I.); CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain (X.R., B.I.); and Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain (B.I.)
| | - Borja Ibanez
- From the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Translational Laboratory for Cardiovascular Imaging and Therapy, Madrid, Spain (X.R., B.I.); CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain (X.R., B.I.); and Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain (B.I.).
| |
Collapse
|
16
|
Influence of Cardiovascular Risk Factors, Comorbidities, Medication Use and Procedural Variables on Remote Ischemic Conditioning Efficacy in Patients with ST-Segment Elevation Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20133246. [PMID: 31269650 PMCID: PMC6650921 DOI: 10.3390/ijms20133246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Remote ischemic conditioning (RIC) confers cardioprotection in patients with ST-segment elevation myocardial infarction (STEMI). Despite intense research, the translation of RIC into clinical practice remains a challenge. This may, at least partly, be due to confounding factors that may modify the efficacy of RIC. The present review focuses on cardiovascular risk factors, comorbidities, medication use and procedural variables which may modify the efficacy of RIC in patients with STEMI. Findings of such efficacy modifiers are based on subgroup and post-hoc analyses and thus hold risk of type I and II errors. Although findings from studies evaluating influencing factors are often ambiguous, some but not all studies suggest that smoking, non-statin use, infarct location, area-at-risk of infarction, pre-procedural Thrombolysis in Myocardial Infarction (TIMI) flow, ischemia duration and coronary collateral blood flow to the infarct-related artery may influence on the cardioprotective efficacy of RIC. Results from the on-going CONDI2/ERIC-PPCI trial will determine any clinical implications of RIC in the treatment of patients with STEMI and predefined subgroup analyses will give further insight into influencing factors on the efficacy of RIC.
Collapse
|
17
|
Rossello X, Lobo-Gonzalez M, Ibanez B. Editor's Choice- Pathophysiology and therapy of myocardial ischaemia/reperfusion syndrome. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2019; 8:443-456. [PMID: 31172789 DOI: 10.1177/2048872619845283] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a need to find interventions able to reduce the extent of injury in reperfused ST-segment elevation myocardial infarction (STEMI) beyond timely reperfusion. In this review, we summarise the clinical impact of STEMI from epidemiological, clinical and biological perspectives. We also revise the pathophysiology underlying the ischaemia/reperfusion syndrome occurring in reperfused STEMI, including the several players involved in this syndrome, such as cardiomyocytes, microcirculation and circulating cells. Interventions aimed to reduce the resultant infarct size, known as cardioprotective therapies, are extensively discussed, putting the focus on both mechanical interventions (i.e. ischaemic conditioning) and promising pharmacological therapies, such as early intravenous metoprolol, exenatide and other glucose modulators, N-acetylcysteine as well as on some other classic therapies which have failed to be translated to the clinical arena. Novel targets for evolving therapeutic interventions to ameliorate ischaemia/reperfusion injury are also discussed. Finally, we highlight the necessity to improve the study design of future randomised clinical trials in the field, as well as to select patients better who can most likely benefit from cardioprotective interventions.
Collapse
Affiliation(s)
- Xavier Rossello
- 1 Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Spain.,2 CIBER de enfermedades CardioVasculares (CIBERCV), Spain
| | - Manuel Lobo-Gonzalez
- 1 Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Spain
| | - Borja Ibanez
- 1 Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Spain.,2 CIBER de enfermedades CardioVasculares (CIBERCV), Spain.,3 Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Spain
| |
Collapse
|
18
|
Amanakis G, Kleinbongard P, Heusch G, Skyschally A. Attenuation of ST-segment elevation after ischemic conditioning maneuvers reflects cardioprotection online. Basic Res Cardiol 2019; 114:22. [PMID: 30937537 DOI: 10.1007/s00395-019-0732-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/12/2019] [Accepted: 03/23/2019] [Indexed: 11/30/2022]
Abstract
Ischemic conditioning maneuvers, when induced either locally in the heart or remotely from the heart, reduce infarct size. However, infarct size reduction can be assessed no earlier than hours after established reperfusion. ST-segment elevation and its attenuation might reflect cardioprotection by ischemic conditioning online. Pigs were subjected to regional myocardial ischemia/reperfusion (1 h/3 h). Ischemic conditioning was induced prior to ischemia either locally (preconditioning; IPC; n = 15) or remotely (remote preconditioning; RIPC; n = 21), remotely during ischemia (remote perconditioning; RPER; n = 18), or locally at reperfusion (postconditioning; POCO; n = 9). Pigs without conditioning served as controls (PLA; n = 29). Area at risk and infarct size were measured postmortem, and ST-segment elevation was analyzed in a V2-like electrocardiogram lead. Ischemic conditioning reduced infarct size (PLA 42 ± 11% of area at risk; IPC 18 ± 10%; RIPC 22 ± 12%; RPER 23 ± 12%, POCO 22 ± 11%). With PLA, ST-segment elevation was increased at 5 min ischemia, sustained until 55 min ischemia and further increased at 10 min reperfusion. IPC and RIPC did not impact on ST-segment elevation at 5 min ischemia, but attenuated ST-segment elevation at 55 min ischemia. With RPER, ST-segment elevation was not different from that with PLA at 5 min, but attenuated at 55 min ischemia. POCO abolished the further increase of ST-segment elevation with reperfusion. Cardioprotection by ischemic conditioning is robustly reflected by attenuation of ST-segment elevation online.
Collapse
Affiliation(s)
- Georgios Amanakis
- Institut für Pathophysiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Petra Kleinbongard
- Institut für Pathophysiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Gerd Heusch
- Institut für Pathophysiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | - Andreas Skyschally
- Institut für Pathophysiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Hufelandstr. 55, 45122, Essen, Germany
| |
Collapse
|
19
|
Circulating mediators of remote ischemic preconditioning: search for the missing link between non-lethal ischemia and cardioprotection. Oncotarget 2019; 10:216-244. [PMID: 30719216 PMCID: PMC6349428 DOI: 10.18632/oncotarget.26537] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of mortality and morbidity worldwide. There has been an extensive search for cardioprotective therapies to reduce myocardial ischemia-reperfusion (I/R) injury. Remote ischemic preconditioning (RIPC) is a phenomenon that relies on the body's endogenous protective modalities against I/R injury. In RIPC, non-lethal brief I/R of one organ or tissue confers protection against subsequent lethal I/R injury in an organ remote to the briefly ischemic organ or tissue. Initially it was believed to be limited to direct myocardial protection, however it soon became apparent that RIPC applied to other organs such as kidney, liver, intestine, skeletal muscle can reduce myocardial infarct size. Intriguing discoveries have been made in extending the concept of RIPC to other organs than the heart. Over the years, the underlying mechanisms of RIPC have been widely sought and discussed. The involvement of blood-borne factors as mediators of RIPC has been suggested by a number of research groups. The main purpose of this review article is to summarize the possible circulating mediators of RIPC, and recent studies to establish the clinical efficacy of these mediators in cardioprotection from lethal I/R injury.
Collapse
|
20
|
Zhou D, Ding J, Ya J, Pan L, Wang Y, Ji X, Meng R. Remote ischemic conditioning: a promising therapeutic intervention for multi-organ protection. Aging (Albany NY) 2018; 10:1825-1855. [PMID: 30115811 PMCID: PMC6128414 DOI: 10.18632/aging.101527] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of formidable exploration, multi-organ ischemia-reperfusion injury (IRI) encountered, particularly amongst elderly patients with clinical scenarios, such as age-related arteriosclerotic vascular disease, heart surgery and organ transplantation, is still an unsettled conundrum that besets clinicians. Remote ischemic conditioning (RIC), delivered via transient, repetitive noninvasive IR interventions to distant organs or tissues, is regarded as an innovative approach against IRI. Based on the available evidence, RIC holds the potential of affording protection to multiple organs or tissues, which include not only the heart and brain, but also others that are likely susceptible to IRI, such as the kidney, lung, liver and skin. Neuronal and humoral signaling pathways appear to play requisite roles in the mechanisms of RIC-related beneficial effects, and these pathways also display inseparable interactions with each other. So far, several hurdles lying ahead of clinical translation that remain to be settled, such as establishment of biomarkers, modification of RIC regimen, and deep understanding of underlying minutiae through which RIC exerts its powerful function. As this approach has garnered an increasing interest, herein, we aim to encapsulate an overview of the basic concept and postulated protective mechanisms of RIC, highlight the main findings from proof-of-concept clinical studies in various clinical scenarios, and also to discuss potential obstacles that remain to be conquered. More well designed and comprehensive experimental work or clinical trials are warranted in future research to confirm whether RIC could be utilized as a non-invasive, inexpensive and efficient adjunct therapeutic intervention method for multi-organ protection.
Collapse
Affiliation(s)
- Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Equal contribution
| | - Jiayue Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Equal contribution
| | - Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
21
|
Rossello X, Piñero A, Fernández-Jiménez R, Sánchez-González J, Pizarro G, Galán-Arriola C, Lobo-Gonzalez M, Vilchez JP, García-Prieto J, García-Ruiz JM, García-Álvarez A, Sanz-Rosa D, Ibanez B. Mirabegron, a Clinically Approved β3 Adrenergic Receptor Agonist, Does Not Reduce Infarct Size in a Swine Model of Reperfused Myocardial Infarction. J Cardiovasc Transl Res 2018; 11:310-318. [PMID: 30073540 DOI: 10.1007/s12265-018-9819-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
The administration of the selective β3 adrenergic receptor (β3AR) agonist BRL-37344 protects from myocardial ischemia/reperfusion injury (IRI), although the lack of clinical approval limits its translatability. We tested the cardioprotective effect of mirabegron, the first-in-class β3AR agonist approved for human use. A dose-response study was conducted in 6 pigs to select the highest intravenous dose of mirabegron without significant detrimental hemodynamic effect. Subsequently, closed chest anterior myocardial infarction (45 min ischemia followed by reperfusion) was performed in 26 pigs which randomly received either mirabegron (10 μg/kg) or placebo 5 min before reperfusion. Day-7 cardiac magnetic resonance (CMR) showed no differences in infarct size (35.0 ± 2.0% of left ventricle (LV) vs. 35.9 ± 2.4% in mirabegron and placebo respectively, p = 0.782) or LV ejection fraction (36.3 ± 1.1 vs. 34.6 ± 1.9%, p = 0.430). Consistent results were obtained on day-45 CMR. In conclusion, the intravenous administration of the clinically available selective β3AR agonist mirabegron does not reduce infarct size in a swine model of IRI.
Collapse
Affiliation(s)
- Xavier Rossello
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Antonio Piñero
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Gonzalo Pizarro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea, Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Manuel Lobo-Gonzalez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Jean Paul Vilchez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Jaime García-Prieto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Jose Manuel García-Ruiz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea, Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain.
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain.
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
22
|
Rosenberg JH, Werner JH, Moulton MJ, Agrawal DK. Current Modalities and Mechanisms Underlying Cardioprotection by Ischemic Conditioning. J Cardiovasc Transl Res 2018; 11:292-307. [PMID: 29797232 PMCID: PMC6117210 DOI: 10.1007/s12265-018-9813-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
Ischemic preconditioning is a process which serves to mitigate reperfusion injury. Preconditioning of the heart can be achieved through natural, pharmacological, and mechanical means. Mechanical preconditioning appears to have the greatest chance of good outcomes while methods employing pharmacologic preconditioning have been largely unsuccessful. Remote ischemic preconditioning achieves a cardioprotective effect by applying cycles of ischemia and reperfusion in a distal limb, stimulating the release of a neurohumoral cardioprotective factor incited by stimulation of afferent neurons. The cardioprotective factor stimulates the reperfusion injury salvage kinase (RISK) and survivor activator factor enhancement (SAFE) signaling cascades in cardiomyocytes which promote cell survival by the expression of anti-apoptotic genes and inhibition of the opening of mitochondrial permeability transition pores. Clinical application of ischemic preconditioning involving targets in the RISK and SAFE signaling appears promising in the treatment of acute myocardial infarction; however, clinical trials have yet to demonstrate additional benefit to current therapy.
Collapse
Affiliation(s)
- John H Rosenberg
- Department of Clinical & Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - John H Werner
- Department of Clinical & Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Michael J Moulton
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
23
|
Abstract
Rapid admission and acute interventional treatment combined with modern antithrombotic pharmacologic therapy have improved outcomes in patients with ST elevation myocardial infarction. The next major target to further advance outcomes needs to address ischemia-reperfusion injury, which may contribute significantly to the final infarct size and hence mortality and postinfarction heart failure. Mechanical conditioning strategies including local and remote ischemic pre-, per-, and postconditioning have demonstrated consistent cardioprotective capacities in experimental models of acute ischemia-reperfusion injury. Their translation to the clinical scenario has been challenging. At present, the most promising mechanical protection strategy of the heart seems to be remote ischemic conditioning, which increases myocardial salvage beyond acute reperfusion therapy. An additional aspect that has gained recent focus is the potential of extended conditioning strategies to improve physical rehabilitation not only after an acute ischemia-reperfusion event such as acute myocardial infarction and cardiac surgery but also in patients with heart failure. Experimental and preliminary clinical evidence suggests that remote ischemic conditioning may modify cardiac remodeling and additionally enhance skeletal muscle strength therapy to prevent muscle waste, known as an inherent component of a postoperative period and in heart failure. Blood flow restriction exercise and enhanced external counterpulsation may represent cardioprotective corollaries. Combined with exercise, remote ischemic conditioning or, alternatively, blood flow restriction exercise may be of aid in optimizing physical rehabilitation in populations that are not able to perform exercise practice at intensity levels required to promote optimal outcomes.
Collapse
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital , Aarhus , Denmark
| | | | | |
Collapse
|
24
|
Kleinbongard P, Amanakis G, Skyschally A, Heusch G. Reflection of Cardioprotection by Remote Ischemic Perconditioning in Attenuated ST-Segment Elevation During Ongoing Coronary Occlusion in Pigs: Evidence for Cardioprotection From Ischemic Injury. Circ Res 2018; 122:1102-1108. [PMID: 29467197 DOI: 10.1161/circresaha.118.312784] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 01/04/2023]
Abstract
RATIONALE Reduction of infarct size by remote ischemic perconditioning (perRIC) is evident only after several hours reperfusion. OBJECTIVE To develop a potential real-time estimate of cardioprotection by perRIC, we have analyzed the time course of ST-segment elevation. METHODS AND RESULTS Anesthetized open-chest pigs were subjected to 60-minute coronary occlusion and 180-minute reperfusion (placebo; n=19). PerRIC (n=18; 4×5 min/5 min hindlimb occlusion/reperfusion) was induced 20 minutes after coronary occlusion. Regional myocardial blood flow was measured with microspheres, areas of no-reflow with thioflavin-S, area at risk with blue dye, and infarct size with triphenyl tetrazolium chloride staining. Phosphorylation of protein kinase B α/β/γ, extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 3 was determined by Western blot. ST-segment elevation was analyzed in a V2-like ECG-lead at baseline, 5- and 55-minute coronary occlusion, and 10-, 30-, 60-, and 120-minute reperfusion. Transmural blood flow at 5-minute coronary occlusion was not different between perRIC (0.029±0.015 mL/min per gram; mean±SD) and placebo (0.024±0.018 mL/min per gram) as was area at risk (perRIC: 24±6% of the left ventricle; placebo: 21±4%). Areas of no-reflow tended to be smaller with perRIC (9±12% of area at risk versus 15±14% with placebo; P=0.13). Infarct size with perRIC was 23±12% of area at risk versus 40±11% with placebo (P<0.001). PerRIC increased phosphorylation of signal transducer and activator of transcription 3 at 120-minute reperfusion by 196±142% versus 109±120% with placebo (P=0.047). The time courses of ST-segment elevation in perRIC and placebo protocols, respectively, were different (P=0.017). With similar ST-segment elevation at 5-minute coronary occlusion (perRIC 282±34 µV; placebo 259±28 µV), partial recovery of ST-segment elevation between 5- and 55-minute coronary occlusion was more pronounced with perRIC than placebo (by 111±84 versus 15±94 µV; P=0.028). CONCLUSION Infarct size reduction by perRIC is reflected in the ST-segment elevation during coronary occlusion in pigs, supporting the notion of protection from ischemic injury.
Collapse
Affiliation(s)
- Petra Kleinbongard
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany
| | - Georgios Amanakis
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany
| | - Andreas Skyschally
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany
| | - Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany.
| |
Collapse
|
25
|
Liu H, Fu L, Sun X, Peng W, Chen Z, Li Y. Remote ischemic conditioning improves myocardial parameters and clinical outcomes during primary percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Oncotarget 2018; 9:8653-8664. [PMID: 29492224 PMCID: PMC5823569 DOI: 10.18632/oncotarget.23818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/04/2017] [Indexed: 01/10/2023] Open
Abstract
We conducted a systematic review and meta-analysis to evaluate the effects of remote ischemic conditioning on myocardial parameters and clinical outcomes in ST segment elevation acute myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention. Ten eligible randomized controlled trials with 1006 STEMI patients were identified. Compared with controls, remote ischemic conditioning reduced the myocardial enzyme levels (standardized mean difference =-0.86; 95% CI: -1.44 to -0.28; P = 0.004; I2 = 94.5%), and increased the incidence of complete ST-segment resolution [odds ratio (OR) = 1.74; 95% CI: 1.09 to 2.77; P = 0.02; I2 = 47.9%]. Remote ischemic conditioning patients had a lower risk of all-cause mortality (OR = 0.27; 95% CI: 0.12 to 0.62; P = 0.002; I2 = 0.0%) and lower major adverse cardiovascular and cerebrovascular events rate (OR=0.45; 95% CI: 0.27 to 0.75; P = 0.002; I2 = 0.0%). Meta-analysis suggested that remote ischemic conditioning conferred cardioprotection by reducing myocardial enzymes and increasing the incidence of complete ST-segment resolution in patients after STEMI. As a result, clinical outcomes were improved in terms of mortality and incidence of major adverse cardiovascular and cerebrovascular events.
Collapse
Affiliation(s)
- Hai Liu
- Third Department of Cardiac Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Li Fu
- Institute of Clinical Medicine, Department of Endocrinology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi 417000, China
| | - Xiangke Sun
- Department of Cardiology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi 417000, China
| | - Wei Peng
- Department of Cardiology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi 417000, China
| | - Zhiwei Chen
- Department of Cardiology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi 417000, China
| | - Yiliang Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Postdoctoral Research Workstation of Neurology, Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
26
|
Abstract
The translation from numerous successful animal experiments on cardioprotection beyond that by reperfusion to clinical practice has to date been disappointing. Animal experiments often use reductionist approaches and are mostly performed in young and healthy animals which lack the risk factors, comorbidities, and comedications which are characteristics of patients suffering an acute myocardial infarction or undergoing cardiovascular surgery. Conceptually, it is still unclear by how much the time window for successful reperfusion is extended by preconditioning, and how long the duration of ischemia can be so that adjunct cardioprotection by postconditioning at reperfusion still protects. Experimental studies addressing long-term effects of adjunct cardioprotection beyond infarct size reduction, that is, on repair, remodeling, and mortality, are lacking. Technically, reproducibility and robustness of experimental studies are often limited. Grave faults in design and conduct of clinical trials have also substantially contributed to the failure of translation of cardioprotection to clinical practice. Cardiovascular surgery with ischemic cardioplegic arrest is only a surrogate of acute myocardial infarction and confounded by the choice of anesthesia, hypothermia, cardioplegia, and traumatic myocardial injury. Trials in patients with acute myocardial infarction have been performed on agents/interventions with no or inconsistent previous animal data and in patients who had either some reperfusion already at admission or were reperfused too late to expect any myocardial salvage. Of greatest concern is the lack of adequate phase II dosing and timing studies when rushing from promising proof-of-concept trials with surrogate end points such as infarct size to larger clinical outcome trials. Future trials must focus on interventions/agents with robust preclinical evidence, have solid phase II dosing and timing data, and recruit patients who have truly a chance to benefit from adjunct cardioprotection.
Collapse
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany.
| |
Collapse
|
27
|
Remote tissue conditioning - An emerging approach for inducing body-wide protection against diseases of ageing. Ageing Res Rev 2017; 37:69-78. [PMID: 28552720 DOI: 10.1016/j.arr.2017.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/05/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
We have long accepted that exercise is 'good for us'; that - put more rigorously - moderate exercise is associated with not just aerobic fitness but also reduced morbidity and reduced mortality from cardiovascular disease and even malignancies. Caloric restriction (moderate hunger) and our exposure to dietary phytochemicals are also emerging as stresses which are 'good for us' in the same sense. This review focuses on an important extension of this concept: that stress localized within the body (e.g. in a limb) can induce resilience in tissues throughout the body. We describe evidence for the efficacy of two 'remote' protective interventions - remote ischemic conditioning and remote photobiomodulation - and discuss the mechanisms underlying their protective actions. While the biological phenomenon of remote tissue conditioning is only partially understood, it holds promise for protecting critical-to-life tissues while mitigating risks and practical barriers to direct conditioning of these tissues.
Collapse
|
28
|
Fernández-Jiménez R, Barreiro-Pérez M, Martin-García A, Sánchez-González J, Agüero J, Galán-Arriola C, García-Prieto J, Díaz-Pelaez E, Vara P, Martinez I, Zamarro I, Garde B, Sanz J, Fuster V, Sánchez PL, Ibanez B. Dynamic Edematous Response of the Human Heart to Myocardial Infarction: Implications for Assessing Myocardial Area at Risk and Salvage. Circulation 2017; 136:1288-1300. [PMID: 28687712 PMCID: PMC5625960 DOI: 10.1161/circulationaha.116.025582] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/26/2017] [Indexed: 01/28/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Clinical protocols aimed to characterize the post–myocardial infarction (MI) heart by cardiac magnetic resonance (CMR) need to be standardized to take account of dynamic biological phenomena evolving early after the index ischemic event. Here, we evaluated the time course of edema reaction in patients with ST-segment–elevation MI by CMR and assessed its implications for myocardium-at-risk (MaR) quantification both in patients and in a large-animal model. Methods: A total of 16 patients with anterior ST-segment–elevation MI successfully treated by primary angioplasty and 16 matched controls were prospectively recruited. In total, 94 clinical CMR examinations were performed: patients with ST-segment–elevation MI were serially scanned (within the first 3 hours after reperfusion and at 1, 4, 7, and 40 days), and controls were scanned only once. T2 relaxation time in the myocardium (T2 mapping) and the extent of edema on T2-weighted short-tau triple inversion-recovery (ie, CMR-MaR) were evaluated at all time points. In the experimental study, 20 pigs underwent 40-minute ischemia/reperfusion followed by serial CMR examinations at 120 minutes and 1, 4, and 7 days after reperfusion. Reference MaR was assessed by contrast-multidetector computed tomography during the index coronary occlusion. Generalized linear mixed models were used to take account of repeated measurements. Results: In humans, T2 relaxation time in the ischemic myocardium declines significantly from early after reperfusion to 24 hours, and then increases up to day 4, reaching a plateau from which it decreases from day 7. Consequently, edema extent measured by T2-weighted short-tau triple inversion-recovery (CMR-MaR) varied with the timing of the CMR examination. These findings were confirmed in the experimental model by showing that only CMR-MaR values for day 4 and day 7 postreperfusion, coinciding with the deferred edema wave, were similar to values measured by reference contrast-multidetector computed tomography. Conclusions: Post-MI edema in patients follows a bimodal pattern that affects CMR estimates of MaR. Dynamic changes in post–ST-segment–elevation MI edema highlight the need for standardization of CMR timing to retrospectively delineate MaR and quantify myocardial salvage. According to the present clinical and experimental data, a time window between days 4 and 7 post-MI seems a good compromise solution for standardization. Further studies are needed to study the effect of other factors on these variables.
Collapse
Affiliation(s)
- Rodrigo Fernández-Jiménez
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Manuel Barreiro-Pérez
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Ana Martin-García
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Javier Sánchez-González
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Jaume Agüero
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Carlos Galán-Arriola
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Jaime García-Prieto
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Elena Díaz-Pelaez
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Pedro Vara
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Irene Martinez
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Ivan Zamarro
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Beatriz Garde
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Javier Sanz
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Valentin Fuster
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Pedro L Sánchez
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.).
| | - Borja Ibanez
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (R.F.-J., J.A., C.G.-A., J.G.-P., J.S., V.F., B.I.); CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.F.-J., M.B.-P., A.M.-G., J.A., C.G.-A., J.G.-P., B.G., P.L.S., B.I.); The Zena and Michael A. Wiener CVI, Icahn School of Medicine at Mount Sinai, New York (R.F.-J., J.S., V.F.); Hospital Universitario de Salamanca, Spain (M.B.-P., A.M.-G., E.D.-P., P.V., I.M., I.Z., B.G., P.L.S.); Philips Healthcare, Madrid, Spain (J.S.-G.); Cardiology Department, Hospital Universtitari i Politecnic La Fe, Valencia, Spain (J.A.); and IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.).
| |
Collapse
|
29
|
Abstract
ST-segment elevation myocardial infarction (STEMI) remains a leading cause of death and morbidity, despite declining incidence and improved short-term outcome in many countries. Although mortality declines in developed countries with easy and fast access to optimized treatment, development of heart failure often remains a challenge in survivors and still approaches 10% at 1 year. Rapid admission and acute interventional treatment combined with modern antithrombotic pharmacologic therapy frequently establish complete reperfusion and acutely stabilize the patient, but the reperfusion itself adds further to the damage in the myocardium compromising the long-term outcome. Reperfusion injury is believed to be a significant-if not the dominant-contributor to the net injury resulting from STEMI and has become a major focus of research in recent years. Despite a plethora of pharmacological and mechanical interventions showing consistent reduction of reperfusion injury in experimental models, translation into a clinical setting has been challenging. In patients, attempts to modify reperfusion injury by pharmacological strategies have largely been unsuccessful, and focus is increasingly directed toward mechanical modalities. Remote ischemic conditioning of the heart is achieved by repeated brief interruption of the blood supply to a distant part of the body, most frequently the arm. At present, remote ischemic conditioning is the most promising adjuvant therapy to reduce reperfusion injury in patients with STEMI. In this review, we discuss the results of clinical trials investigating the effect of remote ischemic conditioning in patients admitted with STEMI and potential reasons for its apparent superiority to current pharmacologic adjuvant therapies.
Collapse
Affiliation(s)
| | | | - Hans Erik Bøtker
- 1 Department of Cardiology, Aarhus University Hospital Skejby, Aarhus, Denmark
| |
Collapse
|
30
|
Abstract
Although remote ischemic conditioning promises significant benefit to patients with a variety of acute and chronic illnesses, development of automated, clinically applicable devices has been slow. At least 3 small companies have launched efforts to develop useful tools intended for sale in European and North American markets. The market challenges and opportunities linked to the development of a cost-effective, reliable, and clinically effective device for the application of remote ischemic conditioning are presented in this article.
Collapse
Affiliation(s)
- Kirk N Garratt
- 1 Center for Heart and Vascular Health, Christiana Care Health System, Newark, DE, USA
| | | |
Collapse
|
31
|
Pryds K, Bøttcher M, Sloth AD, Munk K, Rahbek Schmidt M, Bøtker HE. Influence of preinfarction angina and coronary collateral blood flow on the efficacy of remote ischaemic conditioning in patients with ST segment elevation myocardial infarction: post hoc subgroup analysis of a randomised controlled trial. BMJ Open 2016; 6:e013314. [PMID: 27884851 PMCID: PMC5168541 DOI: 10.1136/bmjopen-2016-013314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Remote ischaemic conditioning (RIC) confers cardioprotection in patients with ST segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (pPCI). We investigated whether preinfarction angina and coronary collateral blood flow (CCBF) to the infarct-related artery modify the efficacy of RIC. DESIGN Post hoc subgroup analysis of a randomised controlled trial. PARTICIPANTS A total of 139 patients with STEMI randomised to treatment with pPCI or RIC+pPCI. INTERVENTIONS RIC was performed prior to pPCI as four cycles of 5 min upper arm ischaemia and reperfusion with a blood pressure cuff. PRIMARY OUTCOME MEASURE Myocardial salvage index (MSI) assessed by single-photon emission computerised tomography. We evaluated the efficacy of RIC in subgroups of patients with or without preinfarction angina or CCBF. RESULTS Of 139 patients included in the study, 109 had available data for preinfarction angina status and 54 had preinfarction angina. Among 83 patients with Thrombolysis In Myocardial Infarction flow 0/1 on arrival, 43 had CCBF. Overall, RIC+pPCI increased median MSI compared with pPCI alone (0.75 vs 0.56, p=0.045). Mean MSI did not differ between patients with and without preinfarction angina in either the pPCI alone (0.58 and 0.57; 95% CI -0.17 to 0.19, p=0.94) or the RIC+pPCI group (0.66 and 0.69; 95% CI -0.18 to 0.10, p=0.58). Mean MSI did not differ between patients with and without CCBF in the pPCI alone group (0.51 and 0.55; 95% CI -0.20 to 0.13, p=0.64), but was increased in patients with CCBF versus without CCBF in the RIC+pPCI group (0.75 vs 0.58; 95% CI 0.03 to 0.31, p=0.02; effect modification from CCBF on the effect of RIC on MSI, p=0.06). CONCLUSIONS Preinfarction angina did not modify the efficacy of RIC in patients with STEMI undergoing pPCI. CCBF to the infarct-related artery seems to be of importance for the cardioprotective efficacy of RIC. TRIAL REGISTRATION NUMBER NCT00435266, Post-results.
Collapse
Affiliation(s)
- Kasper Pryds
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Bøttcher
- Department of Internal Medicine, Hospital Unit West, Herning, Denmark
| | - Astrid Drivsholm Sloth
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kim Munk
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | | | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus, Denmark
| |
Collapse
|
32
|
Rossello X, Yellon DM. A critical review on the translational journey of cardioprotective therapies! Int J Cardiol 2016; 220:176-84. [DOI: 10.1016/j.ijcard.2016.06.131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/03/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023]
|