1
|
Yamamoto N, Urabe Y, Nakahara H, Nakamura T, Shimizu D, Konishi H, Ishibashi K, Ariyoshi M, Miyamoto R, Mizuno J, Takasago T, Ishikawa A, Tsuboi A, Tanaka H, Yamashita K, Hiyama Y, Kishida Y, Takigawa H, Kuwai T, Arihiro K, Shimamoto F, Oka S. Genetic Analysis of Biopsy Tissues from Colorectal Tumors in Patients with Ulcerative Colitis. Cancers (Basel) 2024; 16:3271. [PMID: 39409892 PMCID: PMC11475702 DOI: 10.3390/cancers16193271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Colorectal neoplasia developing from ulcerative colitis mucosa (CRNUC) can be divided into ulcerative colitis-associated neoplasia (UCAN) and non-UCAN; however, it is often difficult to distinguish UCAN from non-UCAN during a biopsy diagnosis. We investigated whether a genomic analysis could improve the diagnostic accuracy of UCAN using biopsy specimens. METHODS In step 1, 14 CRNUCs were used to examine whether the genomic landscape of biopsy and resection specimens matched. In step 2, we investigated the relationship between the genomic landscapes and the pathological diagnosis of 26 CRNUCs. The cancer genome was analyzed by deep sequencing using a custom panel of 27 genes found to be mutated in our previous CRNUC analysis. RESULTS In step 1, of the 27 candidate genes, 14 were mutated. The concordance rate of the pathogenic mutations in these 14 genes between the biopsy and resection specimens was 29% (4/14), while that of the pathogenic mutations in TP53 and KRAS was 79% (11/14). In step 2, the pathological diagnosis of biopsy specimens using only hematoxylin and eosin (HE) staining had a sensitivity of 33% and an accuracy of 38% for UCAN diagnosis. On the other hand, the combination of the HE pathology and p53 immunohistochemical staining had a sensitivity of 73% and an accuracy of 85% for UCAN diagnosis, while the combination of HE staining and a TP53 mutation had a sensitivity of 87% and an accuracy of 88% for UCAN diagnosis. CONCLUSIONS An evaluation of TP53 mutations in biopsy specimens may be useful for diagnosing UCAN. However, further studies with larger sample sizes are required before this can be applied in clinical practice.
Collapse
Affiliation(s)
- Noriko Yamamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Yuji Urabe
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Hikaru Nakahara
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Takeo Nakamura
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Daisuke Shimizu
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Hirona Konishi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Kazuki Ishibashi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Misa Ariyoshi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Ryo Miyamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Junichi Mizuno
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Takeshi Takasago
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Akira Ishikawa
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Akiyoshi Tsuboi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Hidenori Tanaka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Ken Yamashita
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Yuichi Hiyama
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Yoshihiro Kishida
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Hidehiko Takigawa
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Toshio Kuwai
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
- Gastrointestinal Endoscopy and Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Fumio Shimamoto
- Faculty of Health Sciences, Hiroshima Cosmopolitan University, Hiroshima 734-0014, Japan;
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| |
Collapse
|
2
|
Wong SQ, Scott R, Fox SB. KRAS mutation testing in colorectal cancer: the model for molecular pathology testing in the future. COLORECTAL CANCER 2016. [DOI: 10.2217/crc-2015-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Somatic mutations in the KRAS gene often occur in colorectal cancer (CRC) and are predictive for poor response to EGFR blockade therapy. Over the past decade, routine detection of KRAS mutations has been employed in many diagnostic centers using a range of methodological approaches including Sanger sequencing, pyrosequencing, high-resolution melt analysis and more recently, next-generation sequencing approaches. This article highlights the clinical relevance of KRAS-mutated CRCs, examines advantages and disadvantages of various detection methods and highlights the considerations that are critical for an accurate, rapid and efficient workflow to detect KRAS and other RAS mutations in CRC presently and in the future.
Collapse
Affiliation(s)
- Stephen Q Wong
- Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Rodney Scott
- Discipline of Medical Genetics & Centre for Information-Based Medicine, The University of Newcastle & Hunter Medical Research Institute, Newcastle, Australia
- Division of Genetics, Hunter Area Pathology Service, Newcastle, Australia
| | - Stephen B Fox
- Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Hale MD, Gotoda T, Hayden JD, Grabsch HI. Endoscopic biopsies from gastrointestinal carcinomas and their suitability for molecular analysis: a review of the literature and recommendations for clinical practice and research. Histopathology 2015; 67:147-57. [PMID: 25431371 DOI: 10.1111/his.12626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Takuji Gotoda
- Department of Gastroenterology and Hepatology; Tokyo Medical University; Tokyo Japan
| | - Jeremy David Hayden
- Department of Upper Gastrointestinal Surgery; St James's Institute of Oncology; Leeds Teaching Hospitals NHS Trust; Leeds UK
| | - Heike Irmgard Grabsch
- Leeds Institute of Cancer and Pathology; University of Leeds; Leeds UK
- Department of Pathology; Maastricht University Medical Center; Maastricht The Netherlands
| |
Collapse
|
4
|
de Macedo MP, de Melo FM, Ribeiro JDS, de Mello CAL, de Souza Begnami MDF, Soares FA, Carraro DM, da Cunha IW. RAS mutations vary between lesions in synchronous primary colorectal cancer: testing only one lesion is not sufficient to guide anti-EGFR treatment decisions. Oncoscience 2015; 2:125-30. [PMID: 25859555 PMCID: PMC4381705 DOI: 10.18632/oncoscience.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/06/2015] [Indexed: 02/07/2023] Open
Abstract
Introduction Mutations in KRAS and NRAS genes are negative predictors of anti-EGFR therapies response in metastatic colorectal cancer. There are few reports on RAS testing in synchronous primary colorectal cancer (SP-CRC) and a lack of recommendations on which tissue should be tested for the mutation in this disease. This study analyzed the RAS status of both lesions in SP-CRC patients and in their metastasis. Materials and methods DNA was obtained from formalin-fixed-paraffin-embedded tissue, and mutations were analyzed by pyrosequencing. Results RAS status was heterogeneous in 6 (75%) of 8 SP-CRC patients between primary lesions. Five showed heterogeneity regarding RAS mutational status, and from these, four presented with metastasis: 3 cases (75%) had WT metastatic tissue, and 1 case (25%) had mutated metastatic tissue. One patient showed divergence regarding RAS mutation type. Discussion RAS mutations vary significantly between SP-CRC lesions, and the status of the metastasis is unpredictable. Testing for RAS mutations in only 1 of the primary lesions can misguide clinical decisions and hind the predictive potential of anti-EGFR treatment. A more appropriate approach in metastatic SP-CRC is to test the metastatic tissue or both primary lesions for providing more accurate mutation scenery and support more assertive clinical decisions.
Collapse
Affiliation(s)
- Mariana Petaccia de Macedo
- Department of Molecular Diagnosis, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil ; Laboratory of Investigative Pathology, CIPE / AC Camargo Cancer Center, São Paulo, Brazil
| | - Fernanda Machado de Melo
- Department of Molecular Diagnosis, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Júlia da Silva Ribeiro
- Department of Molecular Diagnosis, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | | | - Maria Dirlei Ferreira de Souza Begnami
- Department of Molecular Diagnosis, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil ; Laboratory of Investigative Pathology, CIPE / AC Camargo Cancer Center, São Paulo, Brazil
| | - Fernando Augusto Soares
- Department of Molecular Diagnosis, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil ; Laboratory of Investigative Pathology, CIPE / AC Camargo Cancer Center, São Paulo, Brazil
| | - Dirce Maria Carraro
- Department of Molecular Diagnosis, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil ; Laboratory of Genomics and Molecular Biology, CIPE / AC Camargo Cancer Center, São Paulo, Brazil
| | - Isabela Werneck da Cunha
- Department of Molecular Diagnosis, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil ; Laboratory of Investigative Pathology, CIPE / AC Camargo Cancer Center, São Paulo, Brazil
| |
Collapse
|
5
|
Bartley AN, Hamilton SR. Select biomarkers for tumors of the gastrointestinal tract: present and future. Arch Pathol Lab Med 2014; 139:457-68. [PMID: 25333834 DOI: 10.5858/arpa.2014-0189-ra] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Advances in molecular biomarkers of the gastrointestinal tract have contributed to a decline in the incidence of and mortality from diseases of the gastrointestinal tract. The discovery and clinical validation of new biomarkers are important to personalized cancer therapy, and numerous clinical trials are currently ongoing to help identify individualized therapy affecting these biomarkers and molecular mechanisms they represent. Distinct molecular pathways leading to cancers of the colorectum, esophagus, stomach, small bowel, and pancreas have been identified. Using biomarkers in these pathways to direct patient care, including selection of proper molecular testing for identification of actionable mutations and reporting the results of these biomarkers to guide clinicians and genetic counselors, is paramount. OBJECTIVE To examine and review select clinically actionable biomarkers of the colon, esophagus, stomach, small bowel, and pancreas, including present and future biomarkers with relevant clinical trials. DATA SOURCES Extensive literature review and practical and consultation experience of the authors. CONCLUSIONS Although numerous biomarkers have been identified and are currently guiding patient therapy, few have shown evidence of clinical utility in the management of patients with gastrointestinal cancers. Inconsistent results and discordant proposed algorithms for testing were identified throughout the literature; however, the potential for biomarkers to improve outcomes for patients with gastrointestinal cancer remains high. Continued advances through high-quality studies are needed.
Collapse
Affiliation(s)
- Angela N Bartley
- From Molecular Diagnostics, Department of Pathology, St. Joseph Mercy Hospital, Ypsilanti, Michigan (Dr Bartley); and the Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas (Dr Hamilton)
| | | |
Collapse
|
6
|
Miles KA, Ganeshan B, Rodriguez-Justo M, Goh VJ, Ziauddin Z, Engledow A, Meagher M, Endozo R, Taylor SA, Halligan S, Ell PJ, Groves AM. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer. J Nucl Med 2014; 55:386-91. [PMID: 24516257 DOI: 10.2967/jnumed.113.120485] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED This study explores the potential for multifunctional imaging to provide a signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal cancer. METHODS This prospective study approved by the institutional review board comprised 33 patients undergoing PET/CT before surgery for proven primary colorectal cancer. Tumor tissue was examined histologically for presence of the KRAS mutations and for expression of hypoxia-inducible factor-1 (HIF-1) and minichromosome maintenance protein 2 (mcm2). The following imaging parameters were derived for each tumor: (18)F-FDG uptake ((18)F-FDG maximum standardized uptake value [SUVmax]), CT texture (expressed as mean of positive pixels [MPP]), and blood flow measured by dynamic contrast-enhanced CT. A recursive decision tree was developed in which the imaging investigations were applied sequentially to identify tumors with KRAS mutations. Monte Carlo analysis provided mean values and 95% confidence intervals for sensitivity, specificity, and accuracy. RESULTS The final decision tree comprised 4 decision nodes and 5 terminal nodes, 2 of which identified KRAS mutants. The true-positive rate, false-positive rate, and accuracy (95% confidence intervals) of the decision tree were 82.4% (63.9%-93.9%), 0% (0%-10.4%), and 90.1% (79.2%-96.0%), respectively. KRAS mutants with high (18)F-FDG SUVmax and low MPP showed greater frequency of HIF-1 expression (P = 0.032). KRAS mutants with low (18)F-FDG SUV(max), high MPP, and high blood flow expressed mcm2 (P = 0.036). CONCLUSION Multifunctional imaging with PET/CT and recursive decision-tree analysis to combine measurements of tumor (18)F-FDG uptake, CT texture, and perfusion has the potential to identify imaging signatures for colorectal cancers with KRAS mutations exhibiting hypoxic or proliferative phenotypes.
Collapse
|
7
|
Malapelle U, Carlomagno C, de Luca C, Bellevicine C, Troncone G. KRAS testing in metastatic colorectal carcinoma: challenges, controversies, breakthroughs and beyond. J Clin Pathol 2013; 67:1-9. [DOI: 10.1136/jclinpath-2013-201835] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Malapelle U, Bellevicine C, Salatiello M, de Luca C, Rispo E, Riccio P, Sparano L, De Stefano A, Carlomagno C, Maiello FM, Vita G, Nappi O, Troncone G. Sanger sequencing in routine KRAS testing: a review of 1720 cases from a pathologist's perspective. J Clin Pathol 2012; 65:940-4. [PMID: 22872705 PMCID: PMC3461636 DOI: 10.1136/jclinpath-2012-200773] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background Sanger sequencing (SS) of PCR products is still the most frequent method to test colorectal cancer for KRAS mutations in routine practice. Methods An audit of SS on 1720 routine cases was carried out, taking into account age, gender, specimen type (resection vs biopsies), tumour site (primary vs metastasis), tumour stage, neoplastic cells abundance (>30% vs <30%) and fixation type (buffered formalin vs simple formalin). In a subset of 50 wild-type (WT) patients correlations between SS findings and response rate (RR), progression-free survival (PFS) and overall survival (OS) were also evaluated. Results The tests were informative in 1691 cases (98.3%). Mutations were detected in 671 cases (39.6%). No significant differences in mutation rates were observed with respect to age (p=0.2), gender (p=0.2), specimen type (p=0.3) and formalin fixation (p=0.08). Conversely, KRAS mutant rate was higher in metastatic tissue (50% vs 39%, p=0.02), in samples with over 30% of neoplastic cells (43.4% vs 26.6%, p=0.02) and in tumours tested in stage IV (p=0.05). The RR of SS KRAS WT patients was 26% (one complete and 12 partial responses). The disease control rate (objective responses plus stable disease) was 56%. Median PFS was 4.4 months and median OS was 10.4 months. Conclusions Pathological criteria that make SS a more robust method for KRAS testing and treatment response prediction are neoplastic cell abundance, metastatic tissue sample and stage IV primary tumour.
Collapse
Affiliation(s)
- Umberto Malapelle
- Scienze Biomorfologiche e Funzionali, Universitá degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|