1
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Cadamuro M, Lasagni A, Sarcognato S, Guido M, Fabris R, Strazzabosco M, Strain AJ, Simioni P, Villa E, Fabris L. The Neglected Role of Bile Duct Epithelial Cells in NASH. Semin Liver Dis 2022; 42:34-47. [PMID: 34794182 DOI: 10.1055/s-0041-1739455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide, and affects 25% of the population in Western countries. NAFLD is the hepatic manifestation of the metabolic syndrome, linked to insulin resistance, which is the common pathogenetic mechanism. In approximately 40% of NAFLD patients, steatosis is associated with necro-inflammation and fibrosis, resulting in nonalcoholic steatohepatitis (NASH), a severe condition that may progress to cirrhosis and liver cancer. Although the hepatocyte represents the main target of the disease, involvement of the bile ducts occurs in a subset of patients with NASH, and is characterized by ductular reaction and activation of the progenitor cell compartment, which incites portal fibrosis and disease progression. We aim to dissect the multiple biological effects that adipokines and metabolic alterations exert on cholangiocytes to derive novel information on the mechanisms driven by insulin resistance, which promote fibro-inflammation and carcinogenesis in NASH.
Collapse
Affiliation(s)
| | - Alberto Lasagni
- Division of General Medicine, Padua University-Hospital, Padua, Italy
| | | | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy.,Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Roberto Fabris
- Division of Clinica Medica 3, Center for the Study and the Integrated Management of Obesity, Padua University-Hospital, Padua, Italy
| | - Mario Strazzabosco
- Department of Internal Medicine, Digestive Disease Section, Liver Center, Yale University, New Haven, Connecticut
| | - Alastair J Strain
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Paolo Simioni
- Division of General Medicine, Padua University-Hospital, Padua, Italy.,Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Erica Villa
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, Modena, Italy
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy.,Division of General Medicine, Padua University-Hospital, Padua, Italy.,Department of Internal Medicine, Digestive Disease Section, Liver Center, Yale University, New Haven, Connecticut
| |
Collapse
|
3
|
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166044. [PMID: 33378699 PMCID: PMC7867637 DOI: 10.1016/j.bbadis.2020.166044] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-associated morbidity and mortality is predominantly due to complications of the disease that may cause debilitating conditions, such as heart and renal failure, hepatic insufficiency, retinopathy or peripheral neuropathy. Fibrosis, the excessive and inappropriate deposition of extracellular matrix in various tissues, is commonly found in patients with advanced type 1 or type 2 diabetes, and may contribute to organ dysfunction. Hyperglycemia, lipotoxic injury and insulin resistance activate a fibrotic response, not only through direct stimulation of matrix synthesis by fibroblasts, but also by promoting a fibrogenic phenotype in immune and vascular cells, and possibly also by triggering epithelial and endothelial cell conversion to a fibroblast-like phenotype. High glucose stimulates several fibrogenic pathways, triggering reactive oxygen species generation, stimulating neurohumoral responses, activating growth factor cascades (such as TGF-β/Smad3 and PDGFs), inducing pro-inflammatory cytokines and chemokines, generating advanced glycation end-products (AGEs) and stimulating the AGE-RAGE axis, and upregulating fibrogenic matricellular proteins. Although diabetes-activated fibrogenic signaling has common characteristics in various tissues, some organs, such as the heart, kidney and liver develop more pronounced and clinically significant fibrosis. This review manuscript summarizes current knowledge on the cellular and molecular pathways involved in diabetic fibrosis, discussing the fundamental links between metabolic perturbations and fibrogenic activation, the basis for organ-specific differences, and the promises and challenges of anti-fibrotic therapies for diabetic patients.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Dong W, Yu H, Zhu YY, Xian ZH, Chen J, Wang H, Shi CC, Jin GZ, Dong H, Cong WM. A Novel Pathological Scoring System for Hepatic Cirrhosis with Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:5537-5547. [PMID: 32753967 PMCID: PMC7354953 DOI: 10.2147/cmar.s223417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose This study aimed to propose an effective quantitative pathological scoring system and to establish nomogram to assess the stage of cirrhosis and predict postoperative survival of hepatocellular carcinoma (HCC) with cirrhosis patients after hepatectomy. Methods The scoring system was based on a retrospective study on 163 patients who underwent partial hepatectomy for HCC with cirrhosis. The clinicopathological and follow-up data of 163 HCC with cirrhosis patients who underwent hepatectomy in our hospital from 2010 to 2014 were retrospectively reviewed. A scoring system was established based on the total value of independent predictive factors of cirrhosis. The results were validated using 97 patients operated on from 2011 to 2015 at the same institution. Nomogram was then formulated using a multivariate Cox proportional hazards model to analyze. Results The scoring system was ultimately composed of 4 independent predictive factors and was divided into 3 levels. The new cirrhosis system score strongly correlated with Child–Pugh score (r=0.8058, P<0.0001) 3 months after surgery; higher cirrhosis system scores predicted poorer liver function and stronger liver damage 3 months after surgery. Then, a four-factor nomogram for survival prediction was established. The concordance indices were 0.79 for the survival-prediction nomogram. The calibration curves showed good agreement between predictions by the nomogram and actual survival outcomes. Conclusion This new scoring system of cirrhosis can help us predict the liver function and liver injury 3 months after surgery, and the nomogram enabled accurate predictions of risk of overall survival in patients of HCC with cirrhosis after hepatectomy.
Collapse
Affiliation(s)
- Wei Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| | - Hua Yu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| | - Yu-Yao Zhu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| | - Zhi-Hong Xian
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| | - Jia Chen
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| | - Hao Wang
- Department of Hepatobiliary Diseases, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China
| | - Chun-Chao Shi
- Second Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China
| | - Guang-Zhi Jin
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200050, People's Republic of China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| | - Wen-Ming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| |
Collapse
|
5
|
Siddiqui H, Rawal P, Bihari C, Arora N, Kaur S. Vascular Endothelial Growth Factor Promotes Proliferation of Epithelial Cell Adhesion Molecule-Positive Cells in Nonalcoholic Steatohepatitis. J Clin Exp Hepatol 2020; 10:275-283. [PMID: 32655229 PMCID: PMC7335719 DOI: 10.1016/j.jceh.2019.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
AIM An impaired hepatocyte proliferation during severe liver injury causes the proliferation of hepatic progenitor cells (HPCs), also called as the ductular reaction (DR). In the present study, we studied the role of key angiogenic factors in HPC-mediated DR in nonalcoholic steatohepatitis (NASH). METHODS Liver biopsies from patients with NASH (n = 14) were included in the study. Patients with NASH were divided in two groups, early and late fibrosis (based on fibrosis staging). Biopsies were used to analyze the gene expression by quantitative real-time polymerase chain reaction and immunohistochemical (IHC) staining for two markers of DR, viz, CK19 and epithelial cell adhesion molecule (EpCAM). Cocultures were performed between steatotic human umbilical vein endothelial cells (HUVECs) and LX2 and Huh7 cells. Enzyme-linked immunosorbent assays were performed to measure levels of vascular endothelial growth factor (VEGF) in coculture studies. Next, Huh7 cells were treated with VEGF, and proliferation was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assays. The number of EpCAM-positive cells was analyzed by flow cytometry. RESULTS Of all the angiogenic factors, the gene expression of VEGF and angiopoietin 2 (Ang2) was significantly different between patients with NASH in the early and late fibrosis groups (P < 0.05 for both). Both VEGF and Ang2 also correlated significantly with the IHC scores of CK19 and EpCAM in the study group. In the in vitro studies, VEGF levels were significantly increased when Huh7 cells were cocultured with steatotic HUVECs and LX2 cells. The proliferation and percentage of EpCAM-positive cells was increased when Huh7 cells were treated with VEGF. CONCLUSION Our study indicates an important contribution of VEGF toward the activation of HPC-mediated regeneration and DR in NASH.
Collapse
Key Words
- Ang2, angiopoietin 2
- BSA, bovine serum albumin
- CM, conditioned medium
- DMEM, Dulbecco's Modified Eagle medium
- DR, ductular reaction
- ELISA, enzyme-linked immunosorbent assay
- EpCAM, epithelial cell adhesion molecule
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- HPC, hepatic progenitor cell
- HSC, hepatic stellate cell
- HUVEC, human umbilical vein endothelial cell
- IHC, immunohistochemical
- MT, Masson trichrome
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- PCR, polymerase chain reaction
- VEGF, vascular endothelial growth factor
- angiogenesis
- ductular reaction
- hepatic progenitor cells
- nonalcoholic steatohepatitis
Collapse
Affiliation(s)
- Hamda Siddiqui
- Institute of Liver and Biliary Sciences, New Delhi, India,Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Preety Rawal
- Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Chaggan Bihari
- Institute of Liver and Biliary Sciences, New Delhi, India
| | - Naveen Arora
- Institute of Liver and Biliary Sciences, New Delhi, India
| | - Savneet Kaur
- Institute of Liver and Biliary Sciences, New Delhi, India,Address for correspondence. Dr Savneet Kaur, Institute of liver and biliary sciences, New Delhi, India.
| |
Collapse
|
6
|
Doxazosin and Carvedilol Treatment Improves Hepatic Regeneration in a Hamster Model of Cirrhosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4706976. [PMID: 30643808 PMCID: PMC6311259 DOI: 10.1155/2018/4706976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/29/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Regulation of the mechanisms of fibrosis is an important goal in the treatment of liver cirrhosis. One mechanism is the participation of hepatic stellate cells in fibrogenesis when activated by catecholamines. Consequently, α/β adrenoblockers are proposed as an alternative treatment for chronic liver lesions such as fibrosis and/or cirrhosis and for possible liver regeneration. We herein analyzed the effect of doxazosin and carvedilol treatments during the regeneration of tissue in a hamster model of liver cirrhosis. Tissue samples were examined by H&E and PAS to evaluate tissue damage and with Sirius red to assess collagen fiber content. ALT, AST, albumin, and total proteins were examined by spectrophotometry. Determination of the levels of α-SMA and TGF-β in hepatic tissue was examined by Western blot and of the expression of TIMP-2, MMP-13, α-FP, HGF, CK-7, and c-Myc was examined by qPCR. Treatment with doxazosin or carvedilol prompted histological recovery and reduced collagen fibers in the livers of cirrhotic hamsters. The expression of TIMP-2 decreased and that of MMP-13 increases in animals treated with adrenoblockers with respect to the group with cirrhosis. Additionally, the concentration of α-SMA and TGF-β declined with both drugs with respect to placebo p<0.05. On the other hand, each drug treatment led to a distinct scenario for cell proliferation markers. Whereas doxazosin produced no irregularities in α-FP, Ki-67, and c-Myc expression, carvedilol induced an increment in the expression of these markers with respect to the intact. Hence, doxazosin and carvedilol are potential treatments for the regression of hepatic cirrhosis in hamsters in relation to the decrease of collagen in the hepatic parenchyma. However, at regeneration level we observed that doxazosin caused slight morphological changes in hepatocytes, such as its balonization without affecting the hepatic function, and on the other hand, carvedilol elicited a slight irregular expression of cell proliferation markers.
Collapse
|
7
|
Vespasiani-Gentilucci U, Gallo P, Picardi A. The role of intestinal microbiota in the pathogenesis of NAFLD: starting points for intervention. Arch Med Sci 2018; 14:701-706. [PMID: 29765460 PMCID: PMC5949899 DOI: 10.5114/aoms.2016.58831] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, close links between intestinal microbiota and host metabolism have been recognized. Intestinal bacteria can participate in the extraction of calories from food, and circulation of bacterial products, in particular lipopolysaccharides (LPS), is responsible for the "metabolic endotoxemia", which contributes to insulin resistance and its complications, such as non-alcoholic fatty liver disease (NAFLD). Indeed, qualitative and quantitative intestinal dysbiotic changes have been clearly documented in NAFLD patients, and several mechanisms by which the intestinal microbiota can directly promote liver fat deposition, inflammation and fibrosis have also been described. Consistently, although with some differences concerning type and proportion of results, experimental and clinical studies are quite concordant in demonstrating beneficial effects of probiotic and/or prebiotic therapy in NAFLD. Although some physiopathological bases have been produced, major doubts still remain concerning how and when to intervene. Indeed, most of the available works were performed with mixtures of probiotics and/or prebiotics, and a baseline assessment of dysbiosis aimed at selecting the best candidates for treatment and predicting response has not been performed in any of the clinical studies in NAFLD. While future research is expected to solve these issues, the particularly favorable safety profile suggests that probiotic/prebiotic therapy could already be "tested" in NAFLD patients on an individual basis, at least once all the measures recommended by the latest guidelines have failed.
Collapse
Affiliation(s)
| | - Paolo Gallo
- Department of Medicine, Unit of Internal Medicine and Hepatology, University Campus Bio-Medico, Rome, Italy
| | - Antonio Picardi
- Department of Medicine, Unit of Internal Medicine and Hepatology, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
8
|
Lo RCL, Chan KKS, Leung CON, Ng IOL. Expression of hepatic progenitor cell markers in acute cellular rejection of liver allografts-An immunohistochemical study. Clin Transplant 2018; 32:e13203. [PMID: 29345755 DOI: 10.1111/ctr.13203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hepatic progenitor cells (HPC) are induced following liver injury to facilitate regeneration. Acute cellular rejection (ACR) is a common complication after liver transplantation as a result of immune-mediated liver injury. In this study, we characterized HPC phenotype in liver allograft biopsy with ACR. We also explored the correlation between expression HPC immunophenotype and clinicopathological parameters. METHODS Forty-four liver allograft biopsies performed between 2008 and 2016 in a single center with histologically proven ACR were examined for immunohistochemical expression of HPC markers CK19 and Sox9. The number of positive-staining cells was assessed and correlated with clinicopathological features by statistical analysis. RESULTS HPC phenotype expression as denoted by CK19 and Sox9 staining was detected in the liver tissue with ACR. The numbers of CK19+ and Sox9+ cells were positively correlated. A larger number of CK19+ cells were associated with higher serum aspartate aminotransferase (AST) level at biopsy. By histological rejection score, a larger number of Sox9+ cells were associated with a higher score of bile duct damage. CONCLUSION Expression HPC markers were correlated with clinical and histological parameters in ACR. Expression of each individual marker may be more tightly associated with a particular component of the ACR process.
Collapse
Affiliation(s)
- Regina Cheuk-Lam Lo
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | | | | | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
9
|
|
10
|
Carotti S, Perrone G, Amato M, Vespasiani Gentilucci U, Righi D, Francesconi M, Pellegrini C, Zalfa F, Zingariello M, Picardi A, Onetti Muda A, Morini S. Reelin expression in human liver of patients with chronic hepatitis C infection. Eur J Histochem 2017; 61:2745. [PMID: 28348420 PMCID: PMC5365015 DOI: 10.4081/ejh.2017.2745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Reelin is a secreted extracellular glycoprotein that plays a critical role during brain development. Several studies have described Reelin expression in hepatic stellate cells of the human liver. In order to investigate the possible role of Reelin in the process of hepatic fibrogenesis, in this study we investigated Reelin expression in the liver tissue of patients infected with the Hepatitis C Virus (HCV). On this basis, Reelin expression was analysed by immunohistochemistry during liver biopsies of 81 patients with HCV-related chronic hepatitis. A Knodell score was used to stage liver fibrosis. Hepatic stellate cells/myofibroblast immunohistochemical markers (CRBP-1, alpha-SMA) were also evaluated. As further confirmed by co-localization experiments (Reelin +CRBP-1), Reelin protein was expressed by hepatic stellate cells/myofibroblasts, and a significant positive correlation was found between Reelin expression and the stage of liver fibrosis (P=0.002). Moreover, Reelin correlated with CRBP-1 positive cells (P=0.002), but not with alpha-SMA, suggesting that Reelin should not be regarded as a marker of hepatic stellate cells/myofibroblasts differentiation but rather as a functional protein expressed during some phases of liver fibrosis. Furthermore, Disabled-1 (Dab1), a Reelin adaptor protein, was expressed in cells of ductular reaction suggesting a paracrine role for Reelin with regards these elements. In conclusion, Reelin was expressed by human hepatic stellate cells/myofibroblasts and the number of these cells increased significantly in the lobule as the liver fibrosis progressed, suggesting a role for Reelin in the activation of hepatic stellate cells/myofibroblasts during liver injury. Reelin may potentially be incorporated into liver injury evaluations in combination with other histological data.
Collapse
Affiliation(s)
- Simone Carotti
- Campus Bio-Medico University, Laboratory of Microscopic and Ultrastructural Anatomy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vespasiani-Gentilucci U, Gallo P, Porcari A, Carotti S, Galati G, Piccioni L, De Vincentis A, Dell'Unto C, Vorini F, Morini S, Riva E, Picardi A. The PNPLA3 rs738409 C > G polymorphism is associated with the risk of progression to cirrhosis in NAFLD patients. Scand J Gastroenterol 2016; 51:967-973. [PMID: 27150500 DOI: 10.3109/00365521.2016.1161066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/21/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS The patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 C > G single nucleotide polymorphism (SNP) has been associated with steatosis and fibrosis in previous NAFLD populations in which cirrhotic patients were very poorly represented. Since not all NAFLD with fibrosis evolve to cirrhosis, we investigated the specific risk of cirrhosis conferred in NAFLD patients by carrying this SNP. METHODS Three groups were studied: patients with NASH-cirrhosis; patients with biopsy-proven non-cirrhotic NAFLD; healthy subjects undergoing medicine check-ups. Epidemiological, anthropometric, and clinical data were collected, and the SNP was analyzed by pyrosequencing. RESULTS Sixty-one patients with NASH-cirrhosis, 60 with non-cirrhotic NAFLD, and 125 healthy controls were included. Frequency of the PNPLA3 minor (G) allele was increased in patients with NASH-cirrhosis compared with non-cirrhotic NAFLD and controls (allele frequency: 0.598 versus 0.367 versus 0.2, respectively, p < 0.001), and different between the latter two groups (p < 0.001). Three-quarters (74%) of NASH cirrhotics carried at least one G allele, and almost half of them (46%) were GG homozygous. By multivariate analysis in the NAFLD population, each copy of the G allele was associated with an almost doubling of the risk of cirrhosis [OR 1.8 (1.02-3.2)], while being GG homozygous with a tripled risk compared with being CC homozygous [3.01 (1.03-10.8)]. CONCLUSIONS In NAFLD patients, carriage of the PNPLA3G allele, and particularly of the GG genotype, is significantly associated with the risk of cirrhotic evolution. If confirmed in larger series, these results would suggest that most of NASH cases require the contribution of an altered PNPLA3 function to progress until cirrhosis.
Collapse
Affiliation(s)
| | - Paolo Gallo
- a Internal Medicine and Hepatology Unit , University Campus Bio-Medico , Rome , Italy
| | - Aldostefano Porcari
- a Internal Medicine and Hepatology Unit , University Campus Bio-Medico , Rome , Italy
| | - Simone Carotti
- b Laboratory of Microscopic and Ultrastructural Anatomy, CIR , University Campus Bio-Medico , Rome , Italy
| | - Giovanni Galati
- a Internal Medicine and Hepatology Unit , University Campus Bio-Medico , Rome , Italy
| | - Livia Piccioni
- c Virology Unit , University Campus Bio-Medico , Rome , Italy
| | - Antonio De Vincentis
- a Internal Medicine and Hepatology Unit , University Campus Bio-Medico , Rome , Italy
| | - Chiara Dell'Unto
- a Internal Medicine and Hepatology Unit , University Campus Bio-Medico , Rome , Italy
| | - Ferruccio Vorini
- a Internal Medicine and Hepatology Unit , University Campus Bio-Medico , Rome , Italy
| | - Sergio Morini
- b Laboratory of Microscopic and Ultrastructural Anatomy, CIR , University Campus Bio-Medico , Rome , Italy
| | - Elisabetta Riva
- c Virology Unit , University Campus Bio-Medico , Rome , Italy
| | - Antonio Picardi
- a Internal Medicine and Hepatology Unit , University Campus Bio-Medico , Rome , Italy
| |
Collapse
|