1
|
Lee JB, Kim SK, Yoon JW. Pathophysiology of enteropathogenic Escherichia coli during a host infection. J Vet Sci 2022; 23:e28. [PMID: 35187883 PMCID: PMC8977535 DOI: 10.4142/jvs.21160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. However, sporadic outbreaks caused by this microorganism in developed countries are frequently reported recently. As an important zoonotic pathogen, EPEC is being monitored annually in several countries. Hallmark of EPEC infection is formation of attaching and effacing (A/E) lesions on the small intestine. To establish A/E lesions during a gastrointestinal tract (GIT) infeciton, EPEC must thrive in diverse GIT environments. A variety of stress responses by EPEC have been reported. These responses play significant roles in helping E. coli pass through GIT environments and establishing E. coli infection. Stringent response is one of those responses. It is mediated by guanosine tetraphosphate. Interestingly, previous studies have demonstrated that stringent response is a universal virulence regulatory mechanism present in many bacterial pathogens including EPEC. However, biological signficance of a bacterial stringent response in both EPEC and its interaction with the host during a GIT infection is unclear. It needs to be elucidated to broaden our insight to EPEC pathogenesis. In this review, diverse responses, including stringent response, of EPEC during a GIT infection are discussed to provide a new insight into EPEC pathophysiology in the GIT.
Collapse
Affiliation(s)
- Jun Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se Kye Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jang Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
2
|
Potential Zoonotic Pathovars of Diarrheagenic Escherichia coli Detected in Lambs for Human Consumption from Tierra del Fuego, Argentina. Microorganisms 2021; 9:microorganisms9081710. [PMID: 34442790 PMCID: PMC8401499 DOI: 10.3390/microorganisms9081710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023] Open
Abstract
Diarrheagenic Escherichia coli (DEC) pathovars impact childhood health. The southern region of Argentina shows the highest incidence of hemolytic uremic syndrome (HUS) in children of the country. The big island of Tierra del Fuego (TDF) in Argentina registered an incidence of five cases/100,000 inhabitants of HUS in 2019. This work aimed to establish the prevalence of STEC, EPEC, and EAEC in lambs slaughtered in abattoirs from TDF as well as to characterize the phenotypes and the genotypes of the isolated pathogens. The prevalence was 26.6% for stx+, 5.7% for eae+, and 0.27% for aagR+/aaiC+. Twelve STEC isolates were obtained and belonged to the following serotypes: O70:HNT, O81:H21, O81:HNT, O102:H6, O128ab:H2, O174:H8, and O174:HNT. Their genotypic profiles were stx1c (2), stx1c/ehxA (3), stx2b/ehxA (1), stx1c/stx2b (2), and stx1c/stx2/ehxA (4). Six EPEC isolates were obtained and corresponded to five serotypes: O2:H40, O32:H8, O56:H6, O108:H21, and O177:H25. All the EPEC isolates were bfpA- and two were ehxA+. By XbaI-PFGE of 17 isolates, two clusters were identified. By antimicrobial susceptibility tests, 8/12 STEC and 5/6 EPEC were resistant to at least one antibiotic. This work provides new data to understand the ecology of DEC in TDF and confirms that ovine are an important carrier of these pathogens in the region.
Collapse
|
3
|
Zhang Y, Liao YT, Salvador A, Sun X, Wu VCH. Prediction, Diversity, and Genomic Analysis of Temperate Phages Induced From Shiga Toxin-Producing Escherichia coli Strains. Front Microbiol 2020; 10:3093. [PMID: 32038541 PMCID: PMC6986202 DOI: 10.3389/fmicb.2019.03093] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a notorious foodborne pathogen containing stx genes located in the sequence region of Shiga toxin (Stx) prophages. Stx prophages, as one of the mobile elements, are involved in the transfer of virulence genes to other strains. However, little is known about the diversity of prophages among STEC strains. The objectives of this study were to predict various prophages from different STEC genomes and to evaluate the effect of different stress factors on Stx prophage induction. Forty bacterial whole-genome sequences of STEC strains obtained from National Center for Biotechnology Information (NCBI) were used for the prophage prediction using PHASTER webserver. Eight of the STEC strains from different serotypes were subsequently selected to quantify the induction of Stx prophages by various treatments, including antibiotics, temperature, irradiation, and antimicrobial agents. After induction, Stx1-converting phage Lys8385Vzw and Stx2-converting phage Lys12581Vzw were isolated and further confirmed for the presence of stx genes using conventional PCR. Phage morphology was observed by transmission electron microscopy. The prediction results showed an average of 8–22 prophages, with one or more encoding stx, were predicted from each STEC genome obtained in this study. Additionally, the phylogenetic analysis revealed high genetic diversity of Stx prophages among the 40 STEC genomes. However, the sequences of Stx prophages in the genomes of STEC O45, O111, and O121 strains, in general, shared higher genetic homology than those in other serotypes. Interestingly, most STEC strains with two or more stx genes carried at least one each of Stx1 and Stx2 prophages. The induction results indicated EDTA and UV were the most effective inducers of Stx1 and Stx2 prophages of the 8 selected STECs, respectively. Additionally, both Stx-converting phages could infect non-pathogenic E. coli (WG5, DH5α, and MG1655) and form new lysogens. The findings of this study confirm that Stx prophages can be induced by environmental stress, such as exposure to solar radiation, and lysogenize other commensal E. coli strains.
Collapse
Affiliation(s)
- Yujie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
4
|
Fan R, Shao K, Yang X, Bai X, Fu S, Sun H, Xu Y, Wang H, Li Q, Hu B, Zhang J, Xiong Y. High prevalence of non-O157 Shiga toxin-producing Escherichia coli in beef cattle detected by combining four selective agars. BMC Microbiol 2019; 19:213. [PMID: 31488047 PMCID: PMC6728992 DOI: 10.1186/s12866-019-1582-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) are emerging foodborne pathogens that are public health concern. Cattle have been identified as the major STEC reservoir. In the present study, we investigated the prevalence and characteristics of STEC strains in beef cattle from a commercial farm in Sichuan province, China. Results Among 120 beef cattle fecal samples, stx genes were positive in 90% of samples, as assessed using TaqMan real-time PCR, and 87 (72.5%) samples were confirmed to yield at least one STEC isolate by culture using four selective agars, MacConkey, CHROMagar™ ECC, modified Rainbow® Agar O157, and CHROMagar™ STEC, from which 31, 32, 91, and 73 STEC strains were recovered, respectively. A total of 126 STEC isolates were selected and further characterized. Seventeen different O:H serotypes were identified, all of which belonged to the non-O157 serotypes. One stx1 subtype (stx1a) and three stx2 subtypes (stx2a, stx2c, and stx2d) were present among these isolates. The intimin encoding gene eae, and other adherence-associated genes (iha, saa, and paa) were present in 37, 125, 74, and 30 STEC isolates, respectively. Twenty-three isolates carried the virulence gene subA, and only one harbored both cnf1 and cnf2 genes. Three plasmid-origin virulence genes (ehxA, espP, and katP) were present in 111, 111, and 7 isolates, respectively. The 126 STEC isolates were divided into 49 pulsed-field gel electrophoresis (PFGE) patterns. Conclusions Our study showed that the joint use of the selective MacConkey and modified Rainbow® Agar O157 agars increased the recovery frequency of non-O157 STEC strains in animal feces, which could be applied to other samples and in regular STEC surveillance. Moreover, the results revealed high genetic diversity of non-O157 STEC strains in beef cattle, some of which might have the potential to cause human diseases. Electronic supplementary material The online version of this article (10.1186/s12866-019-1582-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruyue Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Kun Shao
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Xi Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Shanshan Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yanmei Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Bin Hu
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Ji Zhang
- mEpiLab, New Zealand Food Safety Science & Research Center, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.
| |
Collapse
|
5
|
Thirumalapura NR, Feria W, Tewari D. Comparison of three DNA extraction methods for molecular confirmation of Mycobacterium avium subspecies paratuberculosis from the VersaTrek™ liquid cultures of bovine fecal samples. J Microbiol Methods 2018; 152:27-30. [PMID: 30031737 DOI: 10.1016/j.mimet.2018.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
We evaluated three DNA extraction methods for confirmation of Mycobacterium avium subspecies paratuberculosis from liquid cultures of bovine feces. Use of DNA Extract All Reagents Kit™ resulted in efficient extraction of amplifiable DNA from higher proportion (96.29%) of known positive samples compared to Chelex-100 resin (25.92%) and polyethylene glycol (0%).
Collapse
Affiliation(s)
- Nagaraja R Thirumalapura
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, United States.
| | - Willard Feria
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, United States
| | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, United States.
| |
Collapse
|
6
|
Bai X, Mernelius S, Jernberg C, Einemo IM, Monecke S, Ehricht R, Löfgren S, Matussek A. Shiga Toxin-Producing Escherichia coli Infection in Jönköping County, Sweden: Occurrence and Molecular Characteristics in Correlation With Clinical Symptoms and Duration of stx Shedding. Front Cell Infect Microbiol 2018; 8:125. [PMID: 29765909 PMCID: PMC5939558 DOI: 10.3389/fcimb.2018.00125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause bloody diarrhea (BD), hemorrhagic colitis (HC), and even hemolytic uremic syndrome (HUS). In Nordic countries, STEC are widely spread and usually associated with gastrointestinal symptoms and HUS. The objective of this study was to investigate the occurrence of STEC in Swedish patients over 10 years of age from 2003 through 2015, and to analyze the correlation of critical STEC virulence factors with clinical symptoms and duration of stx shedding. Diarrheal stool samples were screened for presence of stx by real-time PCR. All STEC isolates were characterized by DNA microarray assay and PCR to determine serogenotypes, stx subtypes, and presence of intimin gene eae and enterohaemolysin gene ehxA. Multilocus sequencing typing (MLST) was used to assess phylogenetic relationships. Clinical features were collected and analyzed using data from the routine infection control measures in the county. A total of 14,550 samples were enrolled in this 12-years period study, and 175 (1.2%) stools were stx positive by real-time PCR. The overall incidence of STEC infection was 4.9 cases per 100,000 person-years during the project period. Seventy-five isolates, with one isolate per sample were recovered, among which 43 were from non-bloody stools, 32 from BD, and 3 out of the 75 STEC positive patients developed HUS. The presence of stx2 in both stools and isolates were associated with BD (p = 0.008, p = 0.05), and the presence of eae in isolates was related to BD (p = 0.008). The predominant serogenotypes associated with BD were O157:H7, O26:H11, O121:H19, and O103:H2. Isolates from HUS were O104:H4 and O98: H21 serotypes. Phylogenetic analysis revealed our strains were highly diverse, and showed close relatedness to HUS-associated STEC collection strains. In conclusion, the presence of stx2 in stool was related to BD already at the initial diagnostic procedure, thus could be used as risk predictor at an early stage. STEC isolates with stx2 and eae were significantly associated with BD. The predominant serotypes associated with BD were O157:H7, O26:H11, O121:H19, and O103:H2. Nevertheless, the pathogenic potential of other serotypes and genotypes should not be neglected.
Collapse
Affiliation(s)
- Xiangning Bai
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | | | | | | | - Stefan Monecke
- Abbott (Alere Technologies GmbH), Jena, Germany
- Institute for Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Ralf Ehricht
- Institute for Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Sture Löfgren
- Department of Laboratory Medicine, Jönköping, Sweden
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
- Department of Laboratory Medicine, Jönköping, Sweden
- Karolinska University Laboratory, Stockholm, Sweden
| |
Collapse
|