1
|
Fuertes T, Álvarez-Corrales E, Gómez-Escolar C, Ubieto-Capella P, Serrano-Navarro Á, de Molina A, Méndez J, Ramiro AR, de Yébenes VG. miR-28-based combination therapy impairs aggressive B cell lymphoma growth by rewiring DNA replication. Cell Death Dis 2023; 14:687. [PMID: 37852959 PMCID: PMC10585006 DOI: 10.1038/s41419-023-06178-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common aggressive B cell lymphoma and accounts for nearly 40% of cases of B cell non-Hodgkin lymphoma. DLBCL is generally treated with R-CHOP chemotherapy, but many patients do not respond or relapse after treatment. Here, we analyzed the therapeutic potential of the tumor suppressor microRNA-28 (miR-28) for DLBCL, alone and in combination with the Bruton's tyrosine kinase inhibitor ibrutinib. Combination therapy with miR-28 plus ibrutinib potentiated the anti-tumor effects of monotherapy with either agent by inducing a specific transcriptional cell-cycle arrest program that impairs DNA replication. The molecular actions of miR-28 and ibrutinib synergistically impair DNA replication by simultaneous inhibition of origin activation and fork progression. Moreover, we found that downregulation of the miR-28-plus-ibrutinib gene signature correlates with better survival of ABC-DLBCL patients. These results provide evidence for the effectiveness of a new miRNA-based ibrutinib combination therapy for DLBCL and unveil the miR-28-plus-ibrutinib gene signature as a new predictor of outcome in ABC-DLBCL patients.
Collapse
Affiliation(s)
- Teresa Fuertes
- B Cell Biology Laboratory Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Emigdio Álvarez-Corrales
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Gómez-Escolar
- B Cell Biology Laboratory Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Álvaro Serrano-Navarro
- B Cell Biology Laboratory Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Antonio de Molina
- Comparative Medicine Unit. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Méndez
- DNA replication Group. Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Laboratory Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - Virginia G de Yébenes
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
2
|
Hosseini SF, Javanshir-Giv S, Soleimani H, Mollaei H, Sadri F, Rezaei Z. The importance of hsa-miR-28 in human malignancies. Biomed Pharmacother 2023; 161:114453. [PMID: 36868012 DOI: 10.1016/j.biopha.2023.114453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
MicroRNA production in tumorigenesis is dysregulated by a variety of processes, such as proliferation and removal of microRNA genes, aberrant transcriptional regulation of microRNAs, disrupted epigenetic alterations, and failures in the miRNA biogenesis machinery. Under some circumstances, miRNAs may act as tumorigenic and maybe anti-oncogenes. Tumor aspects such as maintaining proliferating signals, bypassing development suppressors, delaying apoptosis, stimulating metastasis and invasion, and promoting angiogenesis have been linked to dysfunctional and dysregulated miRNAs. MiRNAs have been found as possible biomarkers for human cancer in a great deal of research, which requires additional evaluation and confirmation. It is known that hsa-miR-28 can function as an oncogene or tumor suppressor in many malignancies, and it does this by modulating the expression of several genes and the downstream signaling network. MiR-28-5p and miR-28-3p, which originate from the same RNA hairpin precursor miR-28, have essential roles in a variety of cancers. This review outlines the function and mechanisms of miR-28-3p and miR-28-5p in human cancers and illustrates the miR-28 family's potential utility as a diagnostic biomarker for prognosis and early detection of cancers.
Collapse
Affiliation(s)
- Seyede Fatemeh Hosseini
- Faculty Member, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Setareh Javanshir-Giv
- Faculty of Medicine, Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hanieh Soleimani
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
3
|
Effects of hsa-miR-28-5p on Adriamycin Sensitivity in Diffuse Large B-Cell Lymphoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4290994. [PMID: 35873635 PMCID: PMC9300279 DOI: 10.1155/2022/4290994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022]
Abstract
Background Adriamycin (doxorubicin) is an important traditional drug that exhibits cytotoxicity in Diffuse Large B-cell Lymphoma (DLBCL). Doxorubicin affects the DLBCL cells at all stages of their cell cycle. Combined with our previous results, this study discovered that the overexpression of hsa-miR-28-5p inhibited the proliferation, promoted apoptosis, and triggered cell cycle arrest at the S-phase in DLBCL cells. However, the effect of (Homo sapiens, hsa)-microRNA (miR)-28-5p on doxorubicin sensitivity in DLBCL has not been investigated. This study aims to reveal the effects of hsa-miR-28-5p on doxorubicin sensitivity at the level of DLBCL cells. Methods To determine the optimal concentration of doxorubicin, different concentrations of doxorubicin were used to treat DLBCL cells. CCK-8 assay was used to detect the proliferation of DLBCL cells. The hsa-miR-28-5p-mimic NC and hsa-miR-28-5p mimic were transfected to doxorubicin-mediated DLBCL cells. Simultaneously, blank control groups were set up. The cells were cultured and transfected for 24 h. Next, each group was administered with different concentrations of doxorubicin and cultured again for 24 h to observe the effects of hsa-miR-28-5p on doxorubicin sensitivity at different times. The proliferation, early apoptosis, and late apoptosis in DLBCL cells were determined using soft agar colony-forming assay, mitochondrial membrane potential assay, and caspase-3 activity assay, respectively. The apoptosis and cell cycle were explored using Annexin V-PE/7-AAD and PI/RNase staining buffer, respectively. We speculated that PD-L1 might be involved in the effect of hsa-miR-28-5p on the sensitivity of adriamycin (doxorubicin) in the DLBCL cells. Hence, we performed immunohistochemistry (IHC) to determine PD-L1 expression within formalin-fixed paraffin-embedded (FFPE) samples from 52 DLBCL cases. Results The optimal concentration of doxorubicin targeting DLBCL cells was found to be 3.028 μmol/l. The effect of doxorubicin on DLBCL cells was time- and concentration-dependent. hsa-miR-28-5p mimic + doxorubicin remarkably decreased proliferation of DLBCL. DLBCL cell apoptosis rate was the highest in hsa-miR-28-5p mimic + doxorubicin group. Apart from that, hsa-miR-28-5p mimic plus doxorubicin had the best effect in promoting DLBCL cell apoptosis. After the intervention of hsa-miR-28-5p mimic + doxorubicin on DLBCL cells, the cell cycle was arrested in the S-phase and DNA synthesis was blocked. hsa-miR-28-5p mimic + doxorubicin could regulate the cycle of DLBCL cells. As a result, overexpression of hsa-miR-28-5p combined with doxorubicin is possibly involved in the development of DLBCL by affecting the proliferation, apoptosis, and cycle of DLBCL cells. PD-L1 showed an association with the prognosis of DLBCL patients. Combining with the literature, this suggested hsa-miR-28-5p may influence DLBCL occurrence and therapeutic effect by regulating the PD-L1 level. Conclusion The combination of hsa-miR-28-5p mimic and doxorubicin may be considered more effective in inhibiting growth, arresting the cell cycle, and promoting cell apoptosis of DLBCL cells compared to using doxorubicin alone. The effects of doxorubicin on DLBCL cells were found to be time- and concentration-dependent. The overexpression of hsa-miR-28-5p enhanced the effect of doxorubicin on DLBCL cells, which may be attributed to the regulation of PD-L1 levels.
Collapse
|
4
|
The Multiple Myeloma Landscape: Epigenetics and Non-Coding RNAs. Cancers (Basel) 2022; 14:cancers14102348. [PMID: 35625953 PMCID: PMC9139326 DOI: 10.3390/cancers14102348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Recent findings in multiple myeloma have led to therapies which have improved patient life quality and expectancy. However, frequent relapse and drug resistance emphasize the need for more efficient therapeutic approaches. The discovery of non-coding RNAs as key actors in multiple myeloma has broadened the molecular landscape of this disease, together with classical epigenetic factors such as methylation and acetylation. microRNAs and long non-coding RNAs comprise the majority of the described non-coding RNAs dysregulated in multiple myeloma, while circular RNAs are recently emerging as promising molecular targets. This review provides a comprehensive overview of the most recent knowledge on this topic and suggests new therapeutic strategies. Abstract Despite advances in available treatments, multiple myeloma (MM) remains an incurable disease and represents a challenge in oncohematology. New insights into epigenetic factors contributing to MM development and progression have improved the knowledge surrounding its molecular basis. Beyond classical epigenetic factors, including methylation and acetylation, recent genome analyses have unveiled the importance of non-coding RNAs in MM pathogenesis. Non-coding RNAs have become of interest, as their dysregulation opens the door to new therapeutic approaches. The discovery, in the past years, of molecular techniques, such as CRISPR-Cas, has led to innovative therapies with potential benefits to achieve a better outcome for MM patients. This review summarizes the current knowledge on epigenetics and non-coding RNAs in MM pathogenesis.
Collapse
|
5
|
Zhang MY, Wang LQ, Chim CS. miR-1250-5p is a novel tumor suppressive intronic miRNA hypermethylated in non-Hodgkin's lymphoma: novel targets with impact on ERK signaling and cell migration. Cell Commun Signal 2021; 19:62. [PMID: 34044822 PMCID: PMC8161955 DOI: 10.1186/s12964-021-00707-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background miR-1250 is localised to the second intron of AATK at chromosome 17q25. As a CpG island is present at the putative promoter region of its host gene, AATK, we postulated that the intronic miR-1250-5p is a tumor suppressor miRNA co-regulated with its host gene, AATK, by promoter DNA methylation in non-Hodgkin’s lymphoma (NHL).
Methods AATK/miR-1250 methylation was studied in healthy controls, including ten normal peripheral blood buffy coats and eleven normal tonsils, ten lymphoma cell lines, and 120 primary lymphoma samples by methylation-specific PCR (MSP). The expression of miR-1250-5p and AATK was investigated by quantitative real-time PCR. Tumor suppressor properties of miR-1250-5p were demonstrated by over-expression of precursor miR-1250-5p in lymphoma cells. The target of miR-1250-5p was verified by luciferase reporter assay. Results AATK/miR-1250 methylation was absent in healthy peripheral blood and tonsils, but detected in five (50%) NHL cell lines. AATK/miR-1250 methylation correlated with repression of miR-1250-5p and AATK in NHL cell lines. In completely methylated SU-DHL-6 and SUP-T1 cells, treatment with 5-AzadC led to promoter demethylation and re-expression of both miR-1250-5p and AATK. In primary lymphoma samples, AATK/miR-1250 was frequently methylated in B-cell lymphoma (n = 41, 44.09%) and T-cell lymphoma (n = 9, 33.33%) with a comparable frequency (P = 0.318). In SU-DHL-6 and SU-DHL-1 cells, restoration of miR-1250-5p resulted in decreased cellular proliferation by MTS assay, increased cell death by trypan blue staining and enhanced apoptosis by annexin V-PI assay. Moreover, MAPK1 and WDR1 were verified as direct targets of miR-1250-5p by luciferase assay. In 39 primary NHLs, miR-1250-5p expression was shown to be inversely correlated with each of MAPK1 (P = 0.05) and WDR1 (P = 0.031) by qRT-PCR. Finally, in SU-DHL-1 cells, overexpression of miR-1250-5p led to repression of MAPK1 and WDR1 at both transcript and protein levels, with downregulation of phospho-ERK2 by Western-blotting and inhibition of SDF-1-dependent cell migration by transwell assay. Conclusions miR-1250-5p is a novel tumor suppressive intronic miRNA co-regulated and silenced by promoter DNA methylation of its host gene AATK in NHL. MAPK1 and WDR1 are novel miR-1250-5p direct targets rendering inhibition of MAPK/ERK signaling and SDF-1-dependent cell migration, hence implicated in survival and dissemination of lymphoma. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00707-0.
Collapse
Affiliation(s)
- Min Yue Zhang
- Division of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Lu Qian Wang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
6
|
Yue CF, Li LS, Ai L, Deng JK, Guo YM. sMicroRNA-28-5p acts as a metastasis suppressor in gastric cancer by targeting Nrf2. Exp Cell Res 2021; 402:112553. [PMID: 33737068 DOI: 10.1016/j.yexcr.2021.112553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/11/2023]
Abstract
The transcription factor nuclear factor (erythroid-2)-related factor 2 (Nrf2) can principally serve a mode of protection for both the normal cells and cancer cells from cellular stress, and elevates cancer cell survival. microRNA-28 (miR-28) has been involved in the regulation of Nrf2 expression in breast epithelial cells. However, no comprehensive analysis has been conducted regarding the function of miR-28-5p regulating Nrf2 in gastric cancer (GC). In this study, we aimed to evaluate their interaction and biological roles in the migration and invasion of GC cells. The expression of Nrf2 in the cancer tissues harvested from 42 patients with GC was examined by an array of molecular techniques comprising of Immunohistochemical staining, RT-qPCR and Western blot analysis. Kaplan-Meier method was adopted for analysis of the correlation of Nrf2 with the prognosis of GC patients. Interaction between miR-28-5p and Nrf2 was determined using the bioinformatics analysis and dual luciferase reporter gene assay. Gain- and loss-of-function studies of miR-28-5p and Nrf2 were conducted to elucidate their effects on GC cell migration, invasion and metastasis, as well as expression pattern of several epithelial-mesenchymal transition (EMT)-related proteins. Results indicated that the expression pattern of Nrf2 was significantly upregulated in GC tissues and indicative of poor prognosis of GC patients. miR-28-5p was verified to target Nrf2 and downregulate its expression. GC cells with overexpression of miR-28-5p or Nrf2 knockdown exhibited a marked reduction in the migrated and invasive abilities, along with the N-cadherin expression yet an increase of E-cadherin expression. Furthermore, miR-28-5p exerted an inhibitory function on the metastatic and tumorigenicity of GC cells. In conclusion, miR-28-5p is a comprehensive tumor suppressor that inhibits GC cell migration and invasion through repressing the Nrf2 expression. Therefore, miR-28-5p may serve as a potential biomarker for the prognosis of GC and a novel therapeutic target in advanced GC.
Collapse
Affiliation(s)
- Cai-Feng Yue
- Department of Laboratory Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, PR China
| | - Lai-Sheng Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Lu Ai
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Jian-Kai Deng
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Yun-Miao Guo
- Clinic Research Institute of Zhanjiang, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, PR China.
| |
Collapse
|
7
|
Zhang MY, Calin GA, Yuen KS, Jin DY, Chim CS. Epigenetic silencing of miR-342-3p in B cell lymphoma and its impact on autophagy. Clin Epigenetics 2020; 12:150. [PMID: 33076962 PMCID: PMC7574348 DOI: 10.1186/s13148-020-00926-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background miR-342-3p, localized to 14q32, is a tumor suppressor miRNA implicated in carcinogenesis. Given the presence of a promotor-associated CpG island for its host gene, EVL, we hypothesized that intronic miR-342-3p is a tumor suppressor co-regulated with host gene by promoter DNA methylation in B cell lymphoma. Results By bisulfite pyrosequencing-verified methylation-specific PCR (MSP), EVL/MIR342 methylation was detected in five (50%) lymphoma cell lines but not normal peripheral blood and tonsils. EVL/MIR342 methylation correlated with repression of both miR-342-3p and EVL in cell lines. In completely methylated SU-DHL-16 cells, 5-AzadC treatment resulted in promoter demethylation and re-expression of miR-342-3p and EVL. In 132 primary lymphoma samples, EVL/MIR342 was preferentially methylated in B cell lymphomas (N = 68; 68.7%) than T cell lymphoma (N = 8; 24.2%) by MSP (P < 0.0001). Moreover, EVL/MIR342 methylation was associated with lower miR-342-3p expression in 79 primary NHL (P = 0.0443). In SU-DHL-16 cells, the tumor suppressor function of miR-342-3p was demonstrated by the inhibition of cellular proliferation and increase of cell death upon over-expression of miR-342-3p. Mechanistically, overexpression of miR-342-3p resulted in a decrease of LC3-II, a biomarker of autophagy, which was pro-survival for SU-DHL-16. Pre-treatment with 3-methyladenine, an autophagy inhibitor, abrogated tumor suppression associated with miR-342-3p overexpression. By luciferase assay, MAP1LC3B, a precursor of LC3-II, was confirmed as a direct target of miR-342-3p. Finally, in SU-DHL-16 cells, overexpression of miR-342-3p downregulated the known target DNMT1, with promoter demethylation and re-expression of tumor suppressor E-cadherin. Conclusions Intronic miR-342-3p is co-regulated with its host gene EVL by tumor-specific promoter DNA methylation in B cell lymphoma. The tumor suppressor function of miR-342-3p was mediated via inhibition of pro-survival autophagy by targeting MAP1LC3B and downregulation of DNMT1 with demethylation and re-expression of tumor suppressor genes.
Collapse
Affiliation(s)
- Min Yue Zhang
- Division of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kit San Yuen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Dong Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
8
|
Fuertes T, Ramiro AR, de Yebenes VG. miRNA-Based Therapies in B Cell Non-Hodgkin Lymphoma. Trends Immunol 2020; 41:932-947. [PMID: 32888820 DOI: 10.1016/j.it.2020.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Non-Hodgkin lymphoma (NHL) is a diverse class of hematological cancers, many of which arise from germinal center (GC)-experienced B cells. Thus GCs, the sites of antibody affinity maturation triggered during immune responses, also provide an environment that facilitates B cell oncogenic transformation. miRNAs provide attractive and mechanistically different strategies to treat these malignancies based on their potential for simultaneous modulation of multiple targets. Here, we discuss the scientific rationale for miRNA-based therapeutics in B cell neoplasias and review recent advances that may help establish a basis for novel candidate miRNA-based therapies for B cell-NHL (B-NHL).
Collapse
Affiliation(s)
- Teresa Fuertes
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Virginia G de Yebenes
- Universidad Complutense de Madrid School of Medicine, Department of Immunology, Ophthalmology and ENT, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
9
|
Li Z, Kumar S, Jin DY, Calin GA, Chng WJ, Siu KL, Poon MW, Chim CS. Epigenetic silencing of long non-coding RNA BM742401 in multiple myeloma: impact on prognosis and myeloma dissemination. Cancer Cell Int 2020; 20:403. [PMID: 32855620 PMCID: PMC7446116 DOI: 10.1186/s12935-020-01504-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) BM742401 is a tumor suppressor in gastric cancer and chronic lymphocytic leukemia. As the promoter and coding region of BM742401 are fully embedded in a CpG island, we hypothesized that BM742401 is a tumor suppressor lncRNA epigenetically silenced by promoter DNA methylation in multiple myeloma. Methods Methylation-specific PCR and quantitative bisulfite pyrosequencing were performed to detect the methylation of BM742401 in normal plasma cells, myeloma cell lines and primary myeloma samples. The expression of BM742401 was measured by qRT-PCR. The function of BM742401 in multiple myeloma cells was analyzed by lentivirus transduction followed by migration assay. Results BM742401 methylation was detected in 10 (66.7%) myeloma cell lines but not normal plasma cells, and inversely correlated with expression of BM742401. In primary samples, BM742401 methylation was detected in 3 (12.5%) monoclonal gammopathy of undetermined significance, 9 (15.8%) myeloma at diagnosis and 8 (17.0%) myeloma at relapse/progression. Moreover, BM742401 methylation at diagnosis was associated with inferior overall survival (median OS: 25 vs. 39 months; P = 0.0496). In myeloma cell line JJN-3, stable overexpression of BM742401 by lentivirus transduction resulted in reduced cell migration (P = 0.0001) but not impacting cell death or proliferation. Conclusions This is the first report of tumor-specific methylation-mediated silencing of BM742401 in myeloma, which is likely an early event in myelomagenesis with adverse impact on overall survival. Moreover, BM742401 is a tumor suppressor lncRNA by inhibiting myeloma cell migration, hence implicated in myeloma plasma cell homing, metastasis and disease progression.
Collapse
Affiliation(s)
- Zhenhai Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN USA
| | - Dong-Yan Jin
- School of Biomedical Sciences, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Kam-Leung Siu
- School of Biomedical Sciences, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Ming-Wai Poon
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| |
Collapse
|
10
|
Wang LQ, Kumar S, Calin GA, Li Z, Chim CS. Frequent methylation of the tumour suppressor miR-1258 targeting PDL1: implication in multiple myeloma-specific cytotoxicity and prognostification. Br J Haematol 2020; 190:249-261. [PMID: 32079038 DOI: 10.1111/bjh.16517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
miR-1258 is localised to the first intron of ZNF385B at chromosome 2q31.3. miR-1258 promoter methylation was studied in 147 samples including 10 normal buffy coat, eight normal bone marrow plasma cells, 16 human myeloma cell lines (HMCLs), 20 MGUS, 63 diagnostic myeloma, and 30 relapsed myeloma samples by methylation-specific PCR. In myeloma lines, miR-1258 methylation, verified by pyrosequencing, was detected in 62·5% HMCLs but not normal controls, and expression of miR-1258 correlated with that of ZNF385B. 5-Aza-2'-deoxycytidine resulted in promoter demethylation and ZNF385B/miR-1258 re-expression. Luciferase assay confirmed programmed cell death ligand-1 (PDL1) as a direct target of miR-1258. Over-expression of miR-1258 in completely methylated myeloma cells led to reduced cellular proliferation and enhanced apoptosis, hence a tumour suppressor role, in addition to repression of PDL1. In primary samples, miR-1258 methylation, with lower expression of miR-1258, was detected in 49·2% diagnostic myeloma, imparting an inferior PFS (P = 0·034) in addition to 50·0% relapsed myeloma but not MGUS. Therefore, miR-1258 is a tumour suppressor miRNA co-regulated with its host gene, and frequently hypermethylated in active myeloma instead of MGUS, hence acquired during myeloma progression. Methylation-mediated miR-1258 silencing led to overexpression of PDL1 and inferior PFS, implicating miR-1258 in the modulation of myeloma-specific cytotoxicity.
Collapse
Affiliation(s)
- Lu Q Wang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenhai Li
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Chor S Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| |
Collapse
|
11
|
LPP and RYR2 Gene Polymorphisms Correlate with the Risk and the Prognosis of Astrocytoma. J Mol Neurosci 2019; 69:628-635. [DOI: 10.1007/s12031-019-01391-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
|
12
|
Li Z, Wong KY, Calin GA, Chng WJ, Chan GCF, Chim CS. Epigenetic silencing of miR-340-5p in multiple myeloma: mechanisms and prognostic impact. Clin Epigenetics 2019; 11:71. [PMID: 31064412 PMCID: PMC6505104 DOI: 10.1186/s13148-019-0669-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background miR-340-5p, localized to 5q35, is a tumor suppressor miRNA implicated in multiple cancers. As a CpG island is present at the putative promoter region of its host gene, RNF130, we hypothesized that the intronic miR-340-5p is a tumor suppressor miRNA epigenetically silenced by promoter DNA methylation of its host gene in multiple myeloma. Results By pyrosequencing-confirmed methylation-specific PCR, RNF130/miR-340 was methylated in 8/15 (53.3%) myeloma cell lines but not normal plasma cells. Methylation correlated inversely with the expression of both miR-340-5p and RNF130. In completely methylated WL-2 and RPMI-8226R cells, 5-AzadC treatment led to demethylation and re-expression of miR-340-5p. In primary samples, RNF130/miR-340 methylation was detected in 4 (22.2%) monoclonal gammopathy of undetermined significance, 15 (23.8%) diagnostic myeloma, and 7 (23.3%) relapsed myeloma. RNF130/miR-340 methylation at diagnosis was associated with inferior overall survival (median 27 vs. 68 months; P = 3.944E−5). In WL-2 cells, overexpression of miR-340-5p resulted in reduced cellular proliferation [MTS, P = 0.002; verified in KMS-12-PE (P = 0.002) and RPMI-8226R (P = 2.623E−05) cells], increased cell death (trypan blue, P = 0.005), and enhanced apoptosis by annexin V-PI staining. Moreover, by qRT-PCR, overexpression of miR-340-5p led to repression of both known targets (CCND1 and NRAS) and bioinformatically predicted targets in MAPK signaling (MEKK1, MEKK2, and MEKKK3) and apoptosis (MDM4 and XIAP), hence downregulation of phospho-ERK1/2 and XIAP by Western blot. Furthermore, by qRT-PCR, in CD138-sorted primary samples (n = 37), miR-340-5p and XIAP were inversely correlated (P = 0.002). By luciferase assay, XIAP was confirmed as a direct target of miR-340-5p via targeting of the distal but not proximal seed region binding site. Conclusions Collectively, tumor-specific methylation-mediated silencing of miR-340-5p is likely an early event in myelomagenesis with adverse survival impact, via targeting multiple oncogenes in MAPK signaling and apoptosis, thereby a tumor suppressive miRNA in myeloma. Electronic supplementary material The online version of this article (10.1186/s13148-019-0669-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhai Li
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Kwan Yeung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
13
|
Factors Regulating microRNA Expression and Function in Multiple Myeloma. Noncoding RNA 2019; 5:ncrna5010009. [PMID: 30654527 PMCID: PMC6468559 DOI: 10.3390/ncrna5010009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Intensive research has been undertaken during the last decade to identify the implication of microRNAs (miRNAs) in the pathogenesis of multiple myeloma (MM). The expression profiling of miRNAs in MM has provided relevant information, demonstrating different patterns of miRNA expression depending on the genetic abnormalities of MM and a key role of some miRNAs regulating critical genes associated with MM pathogenesis. However, the underlying causes of abnormal expression of miRNAs in myeloma cells remain mainly elusive. The final expression of the mature miRNAs is subject to multiple regulation mechanisms, such as copy number alterations, CpG methylation or transcription factors, together with impairment in miRNA biogenesis and differences in availability of the mRNA target sequence. In this review, we summarize the available knowledge about the factors involved in the regulation of miRNA expression and functionality in MM.
Collapse
|
14
|
Yan S, Sun R, Wu S, Jin T, Zhang S, Niu F, Li J, Chen M. Single nucleotide polymorphism in the 3' untranslated region of LPP is a risk factor for lung cancer: a case-control study. BMC Cancer 2019; 19:35. [PMID: 30621612 PMCID: PMC6325744 DOI: 10.1186/s12885-018-5241-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in 3'-untranslated region (UTR) of genes related with cell-matrix adhesions and migration might affect miRNA binding and potentially affect the risk of cancer. The present study aimed to screen SNPs in 3' UTR of cancer-related genes and investigate their contribution to the susceptibility of lung cancer. METHODS Seven SNPs were selected and genotyped in a case-control study (322 lung cancer patients and 384 controls) among Chinese Han population. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated by logistic regression adjusted for age and gender in multiple genetic models. RESULTS In stratified analyses by gender, three (rs1064607, rs3796283 and rs2378456) of LPP gene were associated with a significantly increased susceptibility for lung cancer among male population. Besides, LPP rs2378456 weakened lung cancer risk in female. LPP rs1064607 polymorphism was significantly correlated with increased risk of lung adenocarcinoma. Furthermore, AA genotype of TNS3 rs9876 polymorphism was associated with lymphatic metastasis. CONCLUSION Our results provides evidence for the impact of LPP polymorphisms on the susceptibility to lung cancer in Chinese population.
Collapse
Affiliation(s)
- Shouchun Yan
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Department of Emergency Medicine, Xi'an No.1 hospital, Xi'an, 710002, Shaanxi, China
| | - Rong Sun
- Department of Emergency Medicine, Xi'an GaoXin Hospital, Xi'an, 710075, Shaanxi, China
| | - Shan Wu
- Department of Respiratory Medicine, Xi'an No.1 hospital (Gaoling District), Xi'an, 710299, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Shanshan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Jingjie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Mingwei Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|