1
|
Kononets V, Zharmakhanova G, Balmagambetova S, Syrlybayeva L, Berdesheva G, Zhussupova Z, Tautanova A, Kurmambayev Y. Tandem mass spectrometry in screening for inborn errors of metabolism: comprehensive bibliometric analysis. Front Pediatr 2025; 13:1463294. [PMID: 40051910 PMCID: PMC11882580 DOI: 10.3389/fped.2025.1463294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Tandem mass spectrometry (MS/MS) for detection of inborn errors of metabolism (IEM) is recognized as an ethical, safe, simple, and reliable screening test. Presented bibliometric analysis aims to describe the network structure of the scientific community in the study area at the level of countries, institutions, authors, papers, keywords, and sources; scientific productivity, directions, and collaboration efforts in a considered period (1991-2024, May). Using the PRISMA method, we conducted a systematic search for articles reporting using MS/MS to screen for inherited metabolic disorders and inborn errors of metabolism collected from the Web of Science Core Collection (WoSCC). A total of 677 articles out of 826, by 3,714 authors, published in 245 journals, with 21,193 citations in 11,295 citing articles, with an average citation of 31.3 per article, and an H-index of 69 were retrieved from the WoSCC. The research status of MS/MS in IEM screening was identified. The most relevant current research directions and future areas of interest were revealed: "selective screening for IEM," "new treatments for IEM," "new disorders considered for MS/MS testing," "ethical issues associated with newborn screening," "new technologies that may be used for newborn screening," and "use of a combination of MS/MS and gene sequencing".
Collapse
Affiliation(s)
- Victoria Kononets
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Gulmira Zharmakhanova
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Saule Balmagambetova
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Lyazzat Syrlybayeva
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Gulshara Berdesheva
- Department of General Hygiene, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Zhanna Zhussupova
- Department of Neonatal Pathology, Aktobe Regional Tertiary Care Center, Aktobe, Kazakhstan
| | - Aidana Tautanova
- Department of Microbiology and Virology, Named After Sh.I. Sarbasova, Astana Medical University, Astana, Kazakhstan
| | - Yergen Kurmambayev
- Consultative and Diagnostic Department, Medical Center of West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
2
|
Yamamoto T, Emoto Y, Murase T, Umehara T, Miura A, Nishiguchi M, Ikematsu K, Nishio H. Molecular autopsy for sudden death in Japan. J Toxicol Pathol 2024; 37:1-10. [PMID: 38283375 PMCID: PMC10811381 DOI: 10.1293/tox.2023-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/17/2023] [Indexed: 01/30/2024] Open
Abstract
Japan has various death investigation systems; however, external examinations, postmortem computed tomography, macroscopic examinations, and microscopic examinations are performed regardless of the system used. These examinations can reveal morphological abnormalities, whereas the cause of death in cases with non-morphological abnormalities can be detected through additional examinations. Molecular autopsy and postmortem genetic analyses are important additional examinations. They are capable of detecting inherited arrhythmias or inherited metabolic diseases, which are representative non-morphological disorders that cause sudden death, especially in infants and young people. In this review, we introduce molecular autopsy reports from Japan and describe our experience with representative cases. The relationships between drug-related deaths and genetic variants are also reviewed. Based on the presented information, molecular autopsy is expected to be used as routine examinations in death investigations because they can provide information to save new lives.
Collapse
Affiliation(s)
- Takuma Yamamoto
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Yuko Emoto
- Department of Legal Medicine, Kansai Medical University,
2-5-1 Shinmachi, Hirakata-shi, Osaka 573-1010, Japan
| | - Takehiko Murase
- Division of Forensic Pathology and Science, Department of
Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine,
Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Takahiro Umehara
- Department of Forensic Medicine, School of Medicine,
University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku,
Kitakyushu-shi, Fukuoka 807-8555, Japan
| | - Aya Miura
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Minori Nishiguchi
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Kazuya Ikematsu
- Division of Forensic Pathology and Science, Department of
Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine,
Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Hajime Nishio
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| |
Collapse
|
3
|
Shimada Y, Kawano N, Goto M, Watanabe H, Ihara K. Stability of amino acids, free and acyl-carnitine in stored dried blood spots. Pediatr Int 2022; 64:e15072. [PMID: 34817917 PMCID: PMC9313883 DOI: 10.1111/ped.15072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Newborn screening of inborn errors of metabolism using tandem mass spectrometry has become a public health strategy in many developed countries. Retrospective analyses using stored dried blood specimens have been limited, mainly due to a lack of biochemical information on the long-term stability of acylcarnitines and amino acids in stored specimens. We studied the characteristic profiles of the stability of amino acid, free carnitine, and acyl carnitines in dried blood specimens stored in a refrigerator after newborn screening. METHODS Dried blood specimens from 198 healthy newborns, which had been stored in a refrigerator at 5 °C after newborn screening, were prospectively subjected to tandem mass spectrometry analyses after 1, 3, 6 months, 1 and 2 years of storage. We also retrospectively re-analyzed the stored samples from 90 newborns, which had been analyzed and stored at 5 °C for 4 years. RESULTS We found that proline (Pro) and tyrosine (Tyr) were stable for 2 years, and that alanine (Ala), arginine (Arg), and phenylalanine (Phe) decayed with linear regression. The C0 increased during the time-course of 2 years, whereas most acylcarnitines gradually decayed and some showed a linear correlation. The retrospective analysis of samples stored for 4 years revealed that Ala, Phe, Pro and Tyr were almost stable, leucine (Leu), valine (Val) decayed with linear regression, C0 increased, and C10, C12, C14, C14:1, C16, C18, C18:1 decreased, while maintaining a linear correlation. CONCLUSIONS These data suggested that some metabolic parameters from refrigerator-stored dried blood specimens were applicable for the detection of inborn errors of metabolism.
Collapse
Affiliation(s)
- Yumi Shimada
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu City, Oita, Japan
| | - Nanae Kawano
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu City, Oita, Japan
| | - Miho Goto
- Department of Clinical Laboratory, Almeida Memorial Hospital, Oita City, Oita, Japan
| | - Hiromi Watanabe
- Department of Clinical Laboratory, Almeida Memorial Hospital, Oita City, Oita, Japan
| | - Kenji Ihara
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu City, Oita, Japan
| |
Collapse
|
4
|
Accurate interpretation of genetic variants in sudden unexpected death in infancy by trio-targeted gene-sequencing panel analysis. Sci Rep 2021; 11:21532. [PMID: 34728707 PMCID: PMC8563990 DOI: 10.1038/s41598-021-00962-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
In sudden unexpected death in infancy cases, postmortem genetic analysis with next-generation sequencing potentially can extract candidate genes associated with sudden death. However, it is difficult to accurately interpret the clinically significant genetic variants. The study aim was to conduct trio analysis of cases of sudden unexpected death in infancy and their parents to more accurately interpret the clinically significant disease-associated gene variants associated with cause of death. From the TruSight One panel targeting 4813 genes we extracted candidate genetic variants of 66 arrhythmia-, 63 inherited metabolic disease-, 81 mitochondrial disease-, and 6 salt-losing tubulopathy-related genes in 7 cases and determined if they were de novo or parental-derived variants. Thirty-four parental-derived variants and no de novo variants were found, but none appeared to be related to the cause of death. Using trio analysis and an in silico algorithm to analyze all 4813 genes, we identified OBSCN of compound heterozygous and HCCS of hemizygous variants as new candidate genetic variants related to cause of death. Genetic analysis of these deceased infants and their living parents can provide more accurate interpretation of the clinically significant genetic variants than previously possible and help confirm the cause of death.
Collapse
|
5
|
Furse S, Koulman A. Lipid extraction from dried blood spots and dried milk spots for untargeted high throughput lipidomics. Mol Omics 2020; 16:563-572. [PMID: 32945330 DOI: 10.1039/d0mo00102c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dried blood spots (DBS) and dried milk spots (DMS) represent convenient matrices for collecting and storing human samples. However, the use of these sample types for researching lipid metabolism remains relatively poorly explored, and especially unclear is the efficiency of lipid extraction in the context of high throughput, untargeted lipidomics. A visual inspection of punched DBSs after standard extraction suggests that the samples remain largely intact. DMSs comprise a dense aggregate of milk fat globules on one side of the card, suggesting that part of the lipid fraction may be physically inaccessible. This led us to the hypothesis that decoagulating may facilitate lipid extraction from both DBSs and DMSs. We tested this hypothesis using a mixture of strong chaeotropes (guanidine and thiourea) in both DBS and DMS in the context of high throughput lipidomics (96/384w plate). Extraction of lipids from DMSs was tested with established extractions and one novel solvent mixture in a high throughput format. We found that exposure of DBSs to chaeotropes facilitated collection of the lipid fraction but was ineffective for DMSs. The lipid fraction of DMSs was best isolated without water, using a mixture of xylene/methanol/isopropanol (1 : 2 : 4). We conclude that decoagulation is essential for efficient extraction of lipids from DBSs and that a non-aqueous procedure using a spectrum of solvents is the best procedure for extracting lipids from DMSs. These methods represent convenient steps that are compatible with the sample structure and type, and with high throughput lipidomics.
Collapse
Affiliation(s)
- Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK.
| | | |
Collapse
|
6
|
Ma C, Zhang L, Wang X, He S, Bai J, Li Q, Zhang M, Zhang C, Yu X, Zhang J, Xin W, Li Y, Zhu D. piRNA-63076 contributes to pulmonary arterial smooth muscle cell proliferation through acyl-CoA dehydrogenase. J Cell Mol Med 2020; 24:5260-5273. [PMID: 32227582 PMCID: PMC7205801 DOI: 10.1111/jcmm.15179] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/09/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are thought to be germline-specific and to be involved in maintaining genome stability during development. Recently, piRNA expression has been identified in somatic cells in diverse organisms. However, the roles of piRNAs in pulmonary arterial smooth muscle cell (PASMC) proliferation and the molecular mechanism underlying the hypoxia-regulated pathological process of pulmonary hypertension are not well understood. Using hypoxic animal models, cell and molecular biology, we obtained the first evidence that the expression of piRNA-63076 was up-regulated in hypoxia and was positively correlated with cell proliferation. Subsequently, we showed that acyl-CoA dehydrogenase (Acadm), which is negatively regulated by piRNA-63076 and interacts with Piwi proteins, was involved in hypoxic PASMC proliferation. Finally, Acadm inhibition under hypoxia was partly attributed to DNA methylation of the Acadm promoter region mediated by piRNA-63076. Overall, these findings represent invaluable resources for better understanding the role of epigenetics in pulmonary hypertension associated with piRNAs.
Collapse
Affiliation(s)
- Cui Ma
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of Medical Laboratory Science and TechnologyHarbin Medical University (Daqing)DaqingChina
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of Medical Laboratory Science and TechnologyHarbin Medical University (Daqing)DaqingChina
| | - Xiaoying Wang
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Siyu He
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - June Bai
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Qian Li
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Min Zhang
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Chen Zhang
- College of PharmacyHarbin University of CommerceHarbinChina
| | - Xiufeng Yu
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of Medical Laboratory Science and TechnologyHarbin Medical University (Daqing)DaqingChina
| | - Junting Zhang
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Wei Xin
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Yiying Li
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
- State Province Key Laboratories of BiomedicinePharmaceutics of ChinaDaqingChina
- Key Laboratory of Cardiovascular Medicine ResearchMinistry of EducationHarbin Medical UniversityHarbinChina
| |
Collapse
|