1
|
Gerussi A, Saldanha OL, Cazzaniga G, Verda D, Carrero ZI, Engel B, Taubert R, Bolis F, Cristoferi L, Malinverno F, Colapietro F, Akpinar R, Di Tommaso L, Terracciano L, Lleo A, Viganó M, Rigamonti C, Cabibi D, Calvaruso V, Gibilisco F, Caldonazzi N, Valentino A, Ceola S, Canini V, Nofit E, Muselli M, Calderaro J, Tiniakos D, L’Imperio V, Pagni F, Zucchini N, Invernizzi P, Carbone M, Kather JN. Deep learning helps discriminate between autoimmune hepatitis and primary biliary cholangitis. JHEP Rep 2025; 7:101198. [PMID: 39829723 PMCID: PMC11741034 DOI: 10.1016/j.jhepr.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND & AIMS Biliary abnormalities in autoimmune hepatitis (AIH) and interface hepatitis in primary biliary cholangitis (PBC) occur frequently, and misinterpretation may lead to therapeutic mistakes with a negative impact on patients. This study investigates the use of a deep learning (DL)-based pipeline for the diagnosis of AIH and PBC to aid differential diagnosis. METHODS We conducted a multicenter study across six European referral centers, and built a library of digitized liver biopsy slides dating from 1997 to 2023. A training set of 354 cases (266 AIH and 102 PBC) and an external validation set of 92 cases (62 AIH and 30 PBC) were available for analysis. A novel DL model, the autoimmune liver neural estimator (ALNE), was trained on whole-slide images (WSIs) with H&E staining, without human annotations. The ALNE model was evaluated against clinico-pathological diagnoses and tested for interobserver variability among general pathologists. RESULTS The ALNE model demonstrated high accuracy in differentiating AIH from PBC, achieving an area under the receiver operating characteristic curve of 0.81 in external validation. Attention heatmaps showed that ALNE tends to focus more on areas with increased inflammation, associating such patterns predominantly with AIH. A multivariate explainable ML model revealed that PBC cases misclassified as AIH more often had ALP values between 1 × upper limit of normal (ULN) and 2 × ULN, coupled with AST values above 1 × ULN. Inconsistency among general pathologists was noticed when evaluating a random sample of the same cases (Fleiss's kappa value 0.09). CONCLUSIONS The ALNE model is the first system generating a quantitative and accurate differential diagnosis between cases with AIH or PBC. IMPACT AND IMPLICATIONS This study demonstrates the significant potential of the autoimmune liver neural estimator model, a transformer-based deep learning system, in accurately distinguishing between autoimmune hepatitis and primary biliary cholangitis using digitized liver biopsy slides without human annotation. The scientific justification for this work lies in addressing the challenge of differentiating these conditions, which often present with overlapping features and can lead to therapeutic mistakes. In addition, there is need for quantitative assessment of information embedded in liver biopsies, which are currently evaluated on qualitative or semi-quantitative methods. The results of this study are crucial for pathologists, researchers, and clinicians, providing a reliable diagnostic tool that reduces interobserver variability and improves diagnostic accuracy of these conditions. Potential methodological limitations, such as the diversity in scanning techniques and slide colorations, were considered, ensuring the robustness and generalizability of the findings.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Oliver Lester Saldanha
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Giorgio Cazzaniga
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | | | - Zunamys I. Carrero
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Bastian Engel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Francesca Bolis
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Malinverno
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Francesca Colapietro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Reha Akpinar
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Pathology, IRCSS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Pathology, IRCSS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Luigi Terracciano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Pathology, IRCSS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mauro Viganó
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Cristina Rigamonti
- Department of Translational Medicine, Università del Piemonte Orientale, Division of Internal Medicine, AOU Maggiore della Carità, Novara, Italy
| | - Daniela Cabibi
- Pathology Institute, PROMISE, University of Palermo, Palermo, Italy
| | - Vincenza Calvaruso
- Gastrointestinal and Liver Unit, Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Fabio Gibilisco
- Department of Pathology, Hospital “Gravina e Santo Pietro”, Caltagirone, Italy
- Department of Medical and Surgical Sciences and Advanced Technologies, “G. F. Ingrassia”, University of Catania, Catania, Italy
| | - Nicoló Caldonazzi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Stefano Ceola
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | - Valentina Canini
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | - Eugenia Nofit
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France
- Inserm, U955, Team 18, Créteil, France
| | - Dina Tiniakos
- Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Vincenzo L’Imperio
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | - Nicola Zucchini
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marco Carbone
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Liver Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Department of Medicine 1, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Mubarak M, Rashid R, Sapna F, Shakeel S. Expanding role and scope of artificial intelligence in the field of gastrointestinal pathology. Artif Intell Gastroenterol 2024; 5:91550. [DOI: 10.35712/aig.v5.i2.91550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/08/2024] Open
Abstract
Digital pathology (DP) and its subsidiaries including artificial intelligence (AI) are rapidly making inroads into the area of diagnostic anatomic pathology (AP) including gastrointestinal (GI) pathology. It is poised to revolutionize the field of diagnostic AP. Historically, AP has been slow to adopt digital technology, but this is changing rapidly, with many centers worldwide transitioning to DP. Coupled with advanced techniques of AI such as deep learning and machine learning, DP is likely to transform histopathology from a subjective field to an objective, efficient, and transparent discipline. AI is increasingly integrated into GI pathology, offering numerous advancements and improvements in overall diagnostic accuracy, efficiency, and patient care. Specifically, AI in GI pathology enhances diagnostic accuracy, streamlines workflows, provides predictive insights, integrates multimodal data, supports research, and aids in education and training, ultimately improving patient care and outcomes. This review summarized the latest developments in the role and scope of AI in AP with a focus on GI pathology. The main aim was to provide updates and create awareness among the pathology community.
Collapse
Affiliation(s)
- Muhammed Mubarak
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Rahma Rashid
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Fnu Sapna
- Department of Pathology, Montefiore Medical Center, The University Hospital for Albert Einstein School of Medicine, Bronx, NY 10461, United States
| | - Shaheera Shakeel
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| |
Collapse
|
3
|
Stulpinas R, Morkunas M, Rasmusson A, Drachneris J, Augulis R, Gulla A, Strupas K, Laurinavicius A. Improving HCC Prognostic Models after Liver Resection by AI-Extracted Tissue Fiber Framework Analytics. Cancers (Basel) 2023; 16:106. [PMID: 38201532 PMCID: PMC10778366 DOI: 10.3390/cancers16010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Despite advances in diagnostic and treatment technologies, predicting outcomes of patients with hepatocellular carcinoma (HCC) remains a challenge. Prognostic models are further obscured by the variable impact of the tumor properties and the remaining liver parenchyma, often affected by cirrhosis or non-alcoholic fatty liver disease that tend to precede HCC. This study investigated the prognostic value of reticulin and collagen microarchitecture in liver resection samples. We analyzed 105 scanned tissue sections that were stained using a Gordon and Sweet's silver impregnation protocol combined with Picric Acid-Sirius Red. A convolutional neural network was utilized to segment the red-staining collagen and black linear reticulin strands, generating a detailed map of the fiber structure within the HCC and adjacent liver tissue. Subsequent hexagonal grid subsampling coupled with automated epithelial edge detection and computational fiber morphometry provided the foundation for region-specific tissue analysis. Two penalized Cox regression models using LASSO achieved a concordance index (C-index) greater than 0.7. These models incorporated variables such as patient age, tumor multifocality, and fiber-derived features from the epithelial edge in both the tumor and liver compartments. The prognostic value at the tumor edge was derived from the reticulin structure, while collagen characteristics were significant at the epithelial edge of peritumoral liver. The prognostic performance of these models was superior to models solely reliant on conventional clinicopathologic parameters, highlighting the utility of AI-extracted microarchitectural features for the management of HCC.
Collapse
Affiliation(s)
- Rokas Stulpinas
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology and Forensic Medicine, Vilnius University, 03101 Vilnius, Lithuania (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| | - Mindaugas Morkunas
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
- Vilnius Santaros Klinikos Biobank, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Allan Rasmusson
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology and Forensic Medicine, Vilnius University, 03101 Vilnius, Lithuania (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| | - Julius Drachneris
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology and Forensic Medicine, Vilnius University, 03101 Vilnius, Lithuania (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| | - Renaldas Augulis
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology and Forensic Medicine, Vilnius University, 03101 Vilnius, Lithuania (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| | - Aiste Gulla
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Faculty of Medicine, Centre for Visceral Medicine and Translational Research, Vilnius University, 03101 Vilnius, Lithuania
- Center of Abdominal Surgery, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Kestutis Strupas
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Faculty of Medicine, Centre for Visceral Medicine and Translational Research, Vilnius University, 03101 Vilnius, Lithuania
- Center of Abdominal Surgery, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Arvydas Laurinavicius
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology and Forensic Medicine, Vilnius University, 03101 Vilnius, Lithuania (A.L.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| |
Collapse
|
4
|
Eccher A, Pagni F, Marletta S, Munari E, Dei Tos AP. Perspective of a Pathologist on Benchmark Strategies for Artificial Intelligence Development in Organ Transplantation. Crit Rev Oncog 2023; 28:1-6. [PMID: 37968987 DOI: 10.1615/critrevoncog.2023048797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transplant pathology of donors is a highly specialized field comprising both the evaluation of organ donor biopsy for the oncological risk transmission and to guide the organ allocation. Timing is critical in transplant procurement since organs must be recovered as soon as possible to ensure the best possible outcome for the recipient. To all this is added the fact that the evaluation of a donor causes difficulties in many cases and the impact of these assessments is paramount, considering the possible recovery of organs that would have been erroneously discarded or, conversely, the possibly correct discarding of donors with unacceptable risk profiles. In transplant pathology histology is still the gold standard for diagnosis dictating the subsequent decisions and course of clinical care. Digital pathology has played an important role in accelerating healthcare progression and nowadays artificial intelligence powered computational pathology can effectively improve diagnostic needs, supporting the quality and safety of the process. Mapping the shape of the journey would suggest a progressive approach from supervised to semi/unsupervised models, which would involve training these models directly for clinical endpoints. In machine learning, this generally delivers better performance, compensating for a potential lack in interpretability. With planning and enough confidence in the performance of learning-based methods from digital pathology and artificial intelligence, there is great potential to augment the diagnostic quality and correlation with clinical endpoints. This may improve the donor pool and vastly reduce diagnostic and prognostic errors that are known but currently are unavoidable in transplant donor pathology.
Collapse
Affiliation(s)
- Albino Eccher
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, University of Milano-Bicocca, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Stefano Marletta
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy; Division of Pathology Humanitas Cancer Center, Catania, Italy
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|