1
|
Gartner JG, Durston MM, Booth SA, Ellison CA. Systemic Treatment with a miR-146a Mimic Suppresses Endotoxin Sensitivity and Partially Protects Mice from the Progression of Acute Graft-versus-Host Disease. Scand J Immunol 2017; 86:368-376. [PMID: 28853768 DOI: 10.1111/sji.12597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022]
Abstract
Acute GVHD (aGVHD) is driven by interactions between the allogenic T cell response, inflammation, tissue injury and microbial products that enter the circulation when protective barriers such as the intestinal epithelium become compromised. Mice with aGVHD become hypersensitive to LPS, secreting large quantities of inflammatory mediators that exacerbate tissue injury. We hypothesized that microRNA (miR) modulators could be used in vivo to mitigate LPS hypersensitivity, altering the course of aGVHD. Using the C57BL/6 → (C57BL/6 × DBA/2)F1 -hybrid model of aGVHD, we measured intestinal permeability over time and used a qPCR array to detect concomitant changes in the expression levels of certain microRNAs (miRs) in the intestine. Large increases in permeability were seen on day 15, when endotoxemia becomes detectable and GVHD-associated histopathological lesions develop. Amongst the miRs with altered expression levels were some that regulate sensitivity to endotoxin. We chose to focus on miR-146a and treated recipient mice systemically with a miR-146a mimic early in the GVH reaction. This led to a reduction in the burst of IFNγ that likely plays a priming role in the mechanism underlying heightened sensitivity to endotoxin. LPS-induced TNFα release and GVHD-associated weight loss were also diminished and survival was prolonged. In summary, systemic treatment with a miR-146a mimic dampens the heightened sensitivity to LPS that occurs concomitantly with increased intestinal permeability and provides partial protection from the progression of acute GVHD.
Collapse
Affiliation(s)
- J G Gartner
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - M M Durston
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - S A Booth
- Molecular PathoBiology, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - C A Ellison
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Abstract
The specificity of the Pastorex Aspergillus latex agglutination test for the diagnosis of manifest aspergillosis is hampered by the occurrence of false-positive results. In order to prove whether or not the false-positive reactions may be caused by the uptake of the soluble galactomannan antigen from the environment, the presence of the antigen was tested in foods, air samples, antibiotics for therapeutic use and faeces. Reactions of the Aspergillus latex agglutination test were found in 15 (79%) out of 19 samples of meals prepared in a hospital kitchen, in five out of six canned vegetables from a supermarket, in all of six samples of pasta and rice bought in health shops, in the faeces of four bone marrow transplant (BMT) recipients and of four healthy subjects and in one and two batches of the antibiotics co-amoxyclav and piperacillin respectively. The concentration of the antigen in faecal material was calculated to be in the range of 1.2-38.4 micrograms g-1. It is concluded that the faecal galactomannan antigen may reach the circulation in patients with dysfunction of the intestinal mucosal barrier, e.g. BMT recipients, thus leading to diagnostically false-positive antigenaemia.
Collapse
Affiliation(s)
- R Ansorg
- Institut für Medizinische Mikrobiologie, Universität-GH Essen, Germany
| | | | | |
Collapse
|