1
|
McKay L, Petrelli B, Pind M, Reynolds JN, Wintle RF, Chudley AE, Drögemöller B, Fainsod A, Scherer SW, Hanlon-Dearman A, Hicks GG. Risk and Resilience Variants in the Retinoic Acid Metabolic and Developmental Pathways Associated with Risk of FASD Outcomes. Biomolecules 2024; 14:569. [PMID: 38785976 PMCID: PMC11117505 DOI: 10.3390/biom14050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a common neurodevelopmental disorder that affects an estimated 2-5% of North Americans. FASD is induced by prenatal alcohol exposure (PAE) during pregnancy and while there is a clear genetic contribution, few genetic factors are currently identified or understood. In this study, using a candidate gene approach, we performed a genetic variant analysis of retinoic acid (RA) metabolic and developmental signaling pathway genes on whole exome sequencing data of 23 FASD-diagnosed individuals. We found risk and resilience alleles in ADH and ALDH genes known to normally be involved in alcohol detoxification at the expense of RA production, causing RA deficiency, following PAE. Risk and resilience variants were also identified in RA-regulated developmental pathway genes, especially in SHH and WNT pathways. Notably, we also identified significant variants in the causative genes of rare neurodevelopmental disorders sharing comorbidities with FASD, including STRA6 (Matthew-Wood), SOX9 (Campomelic Dysplasia), FDG1 (Aarskog), and 22q11.2 deletion syndrome (TBX1). Although this is a small exploratory study, the findings support PAE-induced RA deficiency as a major etiology underlying FASD and suggest risk and resilience variants may be suitable biomarkers to determine the risk of FASD outcomes following PAE.
Collapse
Affiliation(s)
- Leo McKay
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Berardino Petrelli
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Molly Pind
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - James N. Reynolds
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Richard F. Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Albert E. Chudley
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Britt Drögemöller
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12271, Jerusalem 9112102, Israel
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON M5G 1L7, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ana Hanlon-Dearman
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Geoffrey G. Hicks
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
2
|
He X, Dong K, Shen J, Hu G, Mintz JD, Atawia RT, Zhao J, Chen X, Caldwell RW, Xiang M, Stepp DW, Fulton DJ, Zhou J. The Long Noncoding RNA Cardiac Mesoderm Enhancer-Associated Noncoding RNA (Carmn) Is a Critical Regulator of Gastrointestinal Smooth Muscle Contractile Function and Motility. Gastroenterology 2023; 165:71-87. [PMID: 37030336 PMCID: PMC10330198 DOI: 10.1053/j.gastro.2023.03.229] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND & AIMS Visceral smooth muscle cells (SMCs) are an integral component of the gastrointestinal (GI) tract that regulate GI motility. SMC contraction is regulated by posttranslational signaling and the state of differentiation. Impaired SMC contraction is associated with significant morbidity and mortality, but the mechanisms regulating SMC-specific contractile gene expression, including the role of long noncoding RNAs (lncRNAs), remain largely unexplored. Herein, we reveal a critical role of Carmn (cardiac mesoderm enhancer-associated noncoding RNA), an SMC-specific lncRNA, in regulating visceral SMC phenotype and contractility of the GI tract. METHODS Genotype-Tissue Expression and publicly available single-cell RNA sequencing (scRNA-seq) data sets from embryonic, adult human, and mouse GI tissues were interrogated to identify SMC-specific lncRNAs. The functional role of Carmn was investigated using novel green fluorescent protein (GFP) knock-in (KI) reporter/knock-out (KO) mice. Bulk RNA-seq and single nucleus RNA sequencing (snRNA-seq) of colonic muscularis were used to investigate underlying mechanisms. RESULTS Unbiased in silico analyses and GFP expression patterns in Carmn GFP KI mice revealed that Carmn is highly expressed in GI SMCs in humans and mice. Premature lethality was observed in global Carmn KO and inducible SMC-specific KO mice due to GI pseudo-obstruction and severe distension of the GI tract, with dysmotility in cecum and colon segments. Histology, GI transit, and muscle myography analysis revealed severe dilation, significantly delayed GI transit, and impaired GI contractility in Carmn KO vs control mice. Bulk RNA-seq of GI muscularis revealed that loss of Carmn promotes SMC phenotypic switching, as evidenced by up-regulation of extracellular matrix genes and down-regulation of SMC contractile genes, including Mylk, a key regulator of SMC contraction. snRNA-seq further revealed SMC Carmn KO not only compromised myogenic motility by reducing contractile gene expression but also impaired neurogenic motility by disrupting cell-cell connectivity in the colonic muscularis. These findings may have translational significance, because silencing CARMN in human colonic SMCs significantly attenuated contractile gene expression, including MYLK, and decreased SMC contractility. Luciferase reporter assays showed that CARMN enhances the transactivation activity of the master regulator of SMC contractile phenotype, myocardin, thereby maintaining the GI SMC myogenic program. CONCLUSIONS Our data suggest that Carmn is indispensable for maintaining GI SMC contractile function in mice and that loss of function of CARMN may contribute to human visceral myopathy. To our knowledge this is the first study showing an essential role of lncRNA in the regulation of visceral SMC phenotype.
Collapse
Affiliation(s)
- Xiangqin He
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Kunzhe Dong
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia; Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jian Shen
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoqing Hu
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - James D Mintz
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Reem T Atawia
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Juanjuan Zhao
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xiuxu Chen
- Department of Pathology and Laboratory Medicine, Loyola University Health System, Maywood, Illinois
| | - Robert W Caldwell
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - David W Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David J Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia; Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jiliang Zhou
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
3
|
Gunderson JT, Peppriell AE, Krout IN, Vorojeikina D, Rand MD. Neuroligin-1 Is a Mediator of Methylmercury Neuromuscular Toxicity. Toxicol Sci 2021; 184:236-251. [PMID: 34546366 DOI: 10.1093/toxsci/kfab114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylmercury (MeHg) is a developmental toxicant capable of eliciting neurocognitive and neuromuscular deficits in children with in utero exposure. Previous research in Drosophila melanogaster uncovered that developmental MeHg exposure simultaneously targets the developing musculature and innervating motor neuron in the embryo, along with identifying Drosophila neuroligin 1 (nlg1) as a gene associated with developmental MeHg sensitivity. Nlg1 and its transsynaptic partner neurexin 1 (Nrx1) are critical for axonal arborization and NMJ maturation. We investigated the effects of MeHg exposure on indirect flight muscle (IFM) morphogenesis, innervation, and function via flight assays and monitored the expression of NMJ-associated genes to characterize the role of Nlg1 mediating the neuromuscular toxicity of MeHg. Developmental MeHg exposure reduced the innervation of the IFMs, which corresponded with reduced flight ability. In addition, nlg1 expression was selectively reduced during early metamorphosis, whereas a subsequent increase was observed in other NMJ-associated genes, including nrx1, in late metamorphosis. Developmental MeHg exposure also resulted in persistent reduced expression of most nlg and nrx genes during the first 11 days of adulthood. Transgenic modulation of nlg1 and nrx1 revealed that developing muscle is particularly sensitive to nlg1 levels, especially during the 20-36-h window of metamorphosis with reduced nlg1 expression resulting in adult flight deficits. Muscle-specific overexpression of nlg1 partially rescued MeHg-induced deficits in eclosion and flight. We identified Nlg1 as a muscle-specific, NMJ structural component that can mediate MeHg neuromuscular toxicity resulting from early life exposure.
Collapse
Affiliation(s)
- Jakob T Gunderson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Ashley E Peppriell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Ian N Krout
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
4
|
Mederer T, Schmitteckert S, Volz J, Martínez C, Röth R, Thumberger T, Eckstein V, Scheuerer J, Thöni C, Lasitschka F, Carstensen L, Günther P, Holland-Cunz S, Hofstra R, Brosens E, Rosenfeld JA, Schaaf CP, Schriemer D, Ceccherini I, Rusmini M, Tilghman J, Luzón-Toro B, Torroglosa A, Borrego S, Sze-man Tang C, Garcia-Barceló M, Tam P, Paramasivam N, Bewerunge-Hudler M, De La Torre C, Gretz N, Rappold GA, Romero P, Niesler B. A complementary study approach unravels novel players in the pathoetiology of Hirschsprung disease. PLoS Genet 2020; 16:e1009106. [PMID: 33151932 PMCID: PMC7643938 DOI: 10.1371/journal.pgen.1009106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022] Open
Abstract
Hirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction caused by dysfunction of neural crest cells and their progeny during enteric nervous system (ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for disease phenotype are identified only in a minority of cases, and the identification of novel disease-relevant genes remains challenging. In order to identify and to validate a potential disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and database searches, in silico network analyses, and functional readouts using candidate gene-specific genome-edited cell clones. WES datasets of two patients with HSCR and their non-affected parents were analysed, and four novel HSCR candidate genes could be identified: ATP7A, SREBF1, ABCD1 and PIAS2. Further rare variants in these genes were identified in additional HSCR patients, suggesting disease relevance. Transcriptomics revealed that these genes are expressed in embryonic and fetal gastrointestinal tissues. Knockout of these genes in neuronal cells demonstrated impaired cell differentiation, proliferation and/or survival. Our approach identified and validated candidate HSCR genes and provided further insight into the underlying pathomechanisms of HSCR.
Collapse
Affiliation(s)
- Tanja Mederer
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie Schmitteckert
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Volz
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Cristina Martínez
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ralph Röth
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | - Jutta Scheuerer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cornelia Thöni
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonie Carstensen
- Pediatric Surgery Division, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Günther
- Pediatric Surgery Division, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Robert Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Duco Schriemer
- Department of Neuroscience, University Medical Center, Groningen, The Netherlands
| | - Isabella Ceccherini
- UOSD Genetica e Genomica delle Malattie Rare, IRCCS, Instituto Giannina Gaslini, Genova, Italy
| | - Marta Rusmini
- UOSD Genetica e Genomica delle Malattie Rare, IRCCS, Instituto Giannina Gaslini, Genova, Italy
| | - Joseph Tilghman
- Center for Human Genetics and Genomics, New York University School of Medicine, United States of America
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Clara Sze-man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mercè Garcia-Barceló
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Norbert Gretz
- Center of Medical Research, Medical Faculty Mannheim, Mannheim, Germany
| | - Gudrun A. Rappold
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| | - Philipp Romero
- Pediatric Surgery Division, Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Agahi M, Noormohammadi Z, Salahshourifar I, Mahdavi Hezaveh N. Genotype Variations of rs13381800 in TCF4 Gene and rs17039988 in NRXN1 Gene among a Sample of Iranian Patients with Schizophrenia. IRANIAN JOURNAL OF PSYCHIATRY 2019; 14:265-273. [PMID: 32071599 PMCID: PMC7007506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Schizophrenia is a complicated mental disorder that affects about 1% of the world's population. It is a complex disease and is approximately 80% inherited. One of the candidate genes in schizophrenia is transcription factor 4 (TCF4), which is positioned on chromosome 18 and is a transcription factor that plays a role in the transcription of Neurexin 1(NRXN1) gene, which is one of the candidate genes for developing schizophrenia. This case-control study aimed to investigate the correlation of TCF4 rs13381800 and NRXN1 rs17039988 polymorphisms with the risk of schizophrenia in a sample of Iranian patients with schizophrenia. Method : A total of 200 individuals were included in this study: 100 patients with schizophrenia (65 males and 35 females), with the mean age of 40.80 ± 11.298 years, and 100 as a control group (63 males and 37 females), with the mean age 32.92 ± 7.391 years. Allele specific polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) were done, respectively, for genotyping of rs13381800 (T/C) and rs17039988 (A/C) polymorphisms. Results: The results showed that the frequency of C / C genotype in rs13381800 in patients' group was 9%, while it was 13% in the control group. Also, the frequency of C / C genotype in rs17039988 was 9% in patients and 7% in control groups. Statistical analysis of polymorphisms showed no correlation between patients and controls in rs13381800 (OR = 1.51; CI = 95%; P = 0.366) and rs17039988 (OR = 0.76; CI = 95%; P = 0.602). Conclusion: No significant difference was found between rs13381800 and rs17039988 genotypes between patients and control groups in terms of gender, age and education in the patients group. Our study suggests that there was no correlation between desired polymorphisms with schizophrenia in the studied population.
Collapse
Affiliation(s)
- Mohadeseh Agahi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Corresponding Author: Address: Department of Biology, Science and Research Branch, Islamic Azad University, Poonak, Tehran, Iran, Postal Code: 1477893855. Tel: 98-2144865939 Fax: 98-2144865939,
| | - Iman Salahshourifar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Niloufar Mahdavi Hezaveh
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|