1
|
Zhang Y, Yu JG, Wen W. Recent Advances in representative small-molecule DRD2 inhibitors: Synthetic Routes and clinical applications. Eur J Med Chem 2024; 277:116731. [PMID: 39098130 DOI: 10.1016/j.ejmech.2024.116731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
The dopamine D2 receptor (DRD2) represents a pivotal target for therapeutic intervention in the treatment of neuropsychiatric disorders, including schizophrenia, bipolar disorder, and Parkinson's disease. The successful discovery of numerous effective DRD2 inhibitors has led to their clinical application and ongoing evaluation in various clinical trials. This review explores the synthetic approaches and clinical applications of prototypical small-molecule DRD2 inhibitors that have received approval or are currently undergoing clinical trials, highlighting their therapeutic potential and challenges. The synthesis of these inhibitors employs various chemical strategies, including modifications of phenothiazine and butyrophenone structures, which have yielded significant antipsychotic agents like chlorpromazine and haloperidol. Additionally, newer classes of inhibitors, such as aripiprazole, exhibit partial agonist activity at DRD2, offering a unique therapeutic profile. Clinically, DRD2 inhibitors demonstrate efficacy in managing positive symptoms of schizophrenia, manic episodes in bipolar disorder, and dopaminergic imbalance in Parkinson's disease. However, the emergence of adverse effects, including tardive dyskinesia, extrapyramidal symptoms and metabolic syndrome, presents substantial challenges. Advances in the development of second-generation antipsychotics aim to balance efficacy with a better side effect profile by targeting additional neurotransmitter receptors. This review aims to deliver an overview of the synthesis and clinical applications of representative small-molecule DRD2 inhibitors across various clinical phases, thereby offering strategic insights for the advancement of DRD2 inhibitor development.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian-Gang Yu
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Wen Wen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China.
| |
Collapse
|
2
|
Chen W, Chen Q, Huang J, Shen X, Zhang L, Jiang G, Wu T, Wang F, Cheng X. Huanglian-banxia promotes gastric motility of diabetic rats by modulating brain-gut neurotransmitters through MAPK signaling pathway. Neurogastroenterol Motil 2024; 36:e14779. [PMID: 38488234 DOI: 10.1111/nmo.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/13/2023] [Accepted: 03/02/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Gastric motility disorder is an increasingly common problem among people with diabetes. Neurotransmitters have been recognized as critical regulators in the process of gastric motility. Previous study has shown that herb pair huanglian-banxia (HL-BX) can improve gastric motility, but the underlying mechanism is still unclear. The aim of this study was to further investigate the role of HL-BX in modulating brain-gut neurotransmission to promote gastric motility in diabetic rats, and to explore its possible mechanism. METHODS The diabetic rats were divided into five groups. Gastric emptying rate, intestinal propulsion rate, body weight, and average food intake were determined. Substance P (SP), 5- hydroxytryptamine (5-HT), and glucagon-like peptide -1 (GLP-1) in the serum were measured by enzyme-linked immunosorbent assay. Dopamine (DA) and norepinephrine (NE) in the brain were analyzed by high-pressure liquid chromatography with a fluorescence detector. Protein expression of the tissues in the stomach and brain was determined by Western blot. KEY RESULTS HL-BX reduced average food intake significantly, increased body weight, and improved gastric emptying rate and intestinal propulsion rate. HL-BX administration caused a significant increase in SP, GLP-1, and 5-HT, but a significant decrease in DA and NE. Interestingly, HL-BX regulated simultaneously the different expressions of MAPK and its downstream p70S6K/S6 signaling pathway in the stomach and brain. Moreover, berberine exhibited a similar effect to HL-BX. CONCLUSIONS These results indicated that HL-BX promoted gastric motility by regulating brain-gut neurotransmitters through the MAPK signaling pathway. HL-BX and MAPK provide a potential therapeutic option for the treatment of gastroparesis.
Collapse
Affiliation(s)
- Wei Chen
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Qiong Chen
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Jiayi Huang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Xianmin Shen
- Department of Gastroenterology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Lurong Zhang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Guorong Jiang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Tingting Wu
- Department of Gastroenterology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Fei Wang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Xudong Cheng
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Zhang YX, Zhang YJ, Li M, Tian JX, Tong XL. Common Pathophysiological Mechanisms and Treatment of Diabetic Gastroparesis. J Neurogastroenterol Motil 2024; 30:143-155. [PMID: 38576367 PMCID: PMC10999838 DOI: 10.5056/jnm23100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 04/06/2024] Open
Abstract
Diabetic gastroparesis (DGP) is a common complication of diabetes mellitus, marked by gastrointestinal motility disorder, a delayed gastric emptying present in the absence of mechanical obstruction. Clinical manifestations include postprandial fullness and epigastric discomfort, bloating, nausea, and vomiting. DGP may significantly affect the quality of life and productivity of patients. Research on the relationship between gastrointestinal dynamics and DGP has received much attention because of the increasing prevalence of DGP. Gastrointestinal motility disorders are closely related to a variety of factors including the absence and destruction of interstitial cells of Cajal, abnormalities in the neuro-endocrine system and hormone levels. Therefore, this study will review recent literature on the mechanisms of DGP and gastrointestinal motility disorders as well as the development of prokinetic treatment of gastrointestinal motility disorders in order to give future research directions and identify treatment strategies for DGP.
Collapse
Affiliation(s)
- Yu-Xin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan-Jiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Xing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Lin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Scorza FA, de Almeida ACG, Scorza CA, Finsterer J. Gastrointestinal dysfunctions and sudden death in Parkinson patients: domperidone in FOCUS. J Investig Med 2023; 71:540-541. [PMID: 36924398 DOI: 10.1177/10815589231161003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Fulvio A Scorza
- Disciplina de Neurociência. Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brasil.,Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima," Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brasil
| | - Antonio-Carlos G de Almeida
- Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima," Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brasil.,Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del Rei, Brasil
| | - Carla A Scorza
- Disciplina de Neurociência. Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brasil.,Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima," Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brasil
| | - Josef Finsterer
- Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima," Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brasil.,Neurology and Neurophysiology Center, Vienna, Austria
| |
Collapse
|