1
|
Zhang B, Qi R. The dual-function of HSP70 in immune response and tumor immunity: from molecular regulation to therapeutic innovations. Front Immunol 2025; 16:1587414. [PMID: 40297581 PMCID: PMC12034705 DOI: 10.3389/fimmu.2025.1587414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Heat shock protein 70 (HSP70) is a highly conserved molecular chaperone that plays a core role in assisting protein folding and maintaining cellular homeostasis. In recent years, studies have revealed that HSP70 has dual functions in immune regulation: on the one hand, it enhances immune responses by activating non-specific immunity (such as Toll-like receptor 2/4 (TLR2/4) signaling pathways) and specific immunity (such as cross-presentation of antigens, T helper 1 (Th1)/T helper 17 (Th17) differentiation); on the other hand, it inhibits excessive immune reactions by inducing the differentiation of regulatory T cells (Treg) and promoting the secretion of anti-inflammatory factors [such as interleukin-10 (IL-10)]. In cancer, the duality of HSP70 is also very prominent: it can drive tumor progression through pathways such as inhibiting apoptosis, promoting angiogenesis, and tumor metastasis, and it can also inhibit tumor growth by activating immunogenic cell death (ICD), enhancing antigen presentation, and natural killer (NK) cell activity. This review aims to systematically analyze the immune regulatory functions of HSP70, focusing on its dual regulatory mechanisms and the "double-edged sword" nature of HSP70 in tumor immunotherapy and the innovative nature of targeted strategies, as well as providing a theoretical basis and research directions for precision medicine in the treatment strategies of related diseases.
Collapse
Affiliation(s)
- Beining Zhang
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education, and National Health Commission; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| |
Collapse
|
2
|
Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14:1291530. [PMID: 38193080 PMCID: PMC10773740 DOI: 10.3389/fimmu.2023.1291530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Blood vessels are a key target for cancer therapy. Compared with the healthy vasculature, tumor blood vessels are extremely immature, highly permeable, and deficient in pericytes. The aberrantly vascularized tumor microenvironment is characterized by hypoxia, low pH, high interstitial pressure, and immunosuppression. The efficacy of chemotherapy, radiotherapy, and immunotherapy is affected by abnormal blood vessels. Some anti-angiogenic drugs show vascular normalization effects in addition to targeting angiogenesis. Reversing the abnormal state of blood vessels creates a normal microenvironment, essential for various cancer treatments, specifically immunotherapy. In addition, immune cells and molecules are involved in the regulation of angiogenesis. Therefore, combining vascular normalization with immunotherapy may increase the efficacy of immunotherapy and reduce the risk of adverse reactions. In this review, we discussed the structure, function, and formation of abnormal vessels. In addition, we elaborated on the role of the immunosuppressive microenvironment in the formation of abnormal vessels. Finally, we described the clinical challenges associated with the combination of immunotherapy with vascular normalization, and highlighted future research directions in this therapeutic area.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
He X, Lan H, Jin K, Liu F. Can immunotherapy reinforce chemotherapy efficacy? a new perspective on colorectal cancer treatment. Front Immunol 2023; 14:1237764. [PMID: 37790928 PMCID: PMC10543914 DOI: 10.3389/fimmu.2023.1237764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
As one of the main threats to human life (the fourth most dangerous and prevalent cancer), colorectal cancer affects many people yearly, decreases patients' quality of life, and causes irreparable financial and social damages. In addition, this type of cancer can metastasize and involve the liver in advanced stages. However, current treatments can't completely eradicate this disease. Chemotherapy and subsequent surgery can be mentioned among the current main treatments for this disease. Chemotherapy has many side effects, and regarding the treatment of this type of tumor, chemotherapy can lead to liver damage, such as steatohepatitis, steatosis, and sinus damage. These damages can eventually lead to liver failure and loss of its functions. Therefore, it seems that other treatments can be used in addition to chemotherapy to increase its efficiency and reduce its side effects. Biological therapies and immunotherapy are one of the leading suggestions for combined treatment. Antibodies (immune checkpoint blockers) and cell therapy (DC and CAR-T cells) are among the immune system-based treatments used to treat tumors. Immunotherapy targets various aspects of the tumor that may lead to 1) the recruitment of immune cells, 2) increasing the immunogenicity of tumor cells, and 3) leading to the elimination of inhibitory mechanisms established by the tumor. Therefore, immunotherapy can be used as a complementary treatment along with chemotherapy. This review will discuss different chemotherapy and immunotherapy methods for colorectal cancer. Then we will talk about the studies that have dealt with combined treatment.
Collapse
Affiliation(s)
- Xing He
- Department of Gastroenterology, Jinhua Wenrong Hospital, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fanlong Liu
- Department of Colorectal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
ÖZYURT R, ERKASAP N, ÖZKURT M, ERKASAP S, DİMAS K, ÇAKIR GÜNDOĞDU A, ULUKAYA E. Targeting of Notch, IL-1, and leptin has therapeutic potential in xenograft colorectal cancer. Turk J Biol 2023; 47:290-300. [PMID: 38152619 PMCID: PMC10751088 DOI: 10.55730/1300-0152.2663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/31/2023] [Accepted: 08/10/2023] [Indexed: 12/29/2023] Open
Abstract
Background/aim Colorectal cancer (CRC) is a fatal malignancy type and its occurence still needs to be explored mechanistically. Notch, IL-1, and leptin crosstalk is reported to play a role in the proliferation, migration, and expression of proangiogenic molecules. In this study, we aimed to investigate the effect of inhibition of Notch, IL-1, and leptin on CRC. Materials and methods To generate colorectal cancer tumor xenografts, 1 × 107 cells from exponentially growing cultures of HCT-15 cells were injected subcutaneously, at the axillary region of the left and right rear flanks of forty NOD.CB17-Prkdcscid/J (NOD/SCID) female mice. The mice were then monitored for the development of tumors and were randomly divided into five groups when tumor sizes reached a volume of approximately 150 mm3. Mice were used to determine the effectiveness of the gamma-secretase inhibitor (DAPT, Notch inhibitor), the interleukin-1 receptor antagonist (Anakinra) and the leptin receptor antagonist (Allo aca) against tumor growth. The mice were euthanized by CO2 inhalation immediately after the treatments finished, and all efforts were made to minimize suffering. Tumors were excissed for RT-PCR and histological analysis. Results There is an intact Notch, IL-1, and leptin signaling axis, and in vivo antagonism of Notch, IL-1, and leptin affects mRNA and protein expression of inflammatory and angiogenic molecules. Conclusion Present data suggest that targeting Notch, IL-1, and leptin may be possesses therapeutic potential in CRC.
Collapse
Affiliation(s)
- Rumeysa ÖZYURT
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX,
USA
- Department of Physiology, Eskişehir Osmangazi University Medical Faculty, Eskişehir,
Turkiye
| | - Nilüfer ERKASAP
- Department of Physiology, Eskişehir Osmangazi University Medical Faculty, Eskişehir,
Turkiye
| | - Mete ÖZKURT
- Department of Physiology, Eskişehir Osmangazi University Medical Faculty, Eskişehir,
Turkiye
| | - Serdar ERKASAP
- Department of General Surgery, Eskişehir Osmangazi University Medical Faculty, Eskişehir,
Turkiye
| | - Konstantinos DİMAS
- Department of Pharmacology, School of Health Science, Thessaly University, Larissa,
Greece
| | - Ayşe ÇAKIR GÜNDOĞDU
- Department of Histology and Embrology, Kütahya Health Sciences University Medical Faculty, Kütahya,
Turkiye
| | - Engin ULUKAYA
- Department of Clinical Biochemistry, Faculty of Medicine, İstinye University, İstanbul,
Turkiye
| |
Collapse
|
5
|
Piszczek P, Wójcik-Piotrowicz K, Guzdek P, Gil K, Kaszuba-Zwoińska J. Protein expression changes during phagocytosis influenced by low-frequency electromagnetic field exposure. Int J Biol Macromol 2022; 217:481-491. [PMID: 35841960 DOI: 10.1016/j.ijbiomac.2022.07.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/05/2022]
Abstract
The aim of our studies was to determine the influence of a low-frequency electromagnetic field (EMF) on the phagocytosis of latex beads (LBs) and the expression level of proteins/genes in the human monocytic macrophage Mono Mac 6 (MM6) cell line in in vitro conditions. Before phagocytosis assay cells were pre-stimulated with infectious agents such as lipopolysaccharide (LPS), Staphylococcal enterotoxin B (SEB), or the proliferatory agent phytohaemagglutinin (PHA), and then exposed to EMF (30 mT, 7 Hz, 3 h). The expression of cytoplasmic proteins like iPLA, cPLA, iNOS, NLR3/4, and Hsp70 involved in the immune response pathways to phagocytosed particles were evaluated with the usage of the Western blot analysis. mRNA encoding the iNOS protein was detected by reverse transcription PCR method. The most meaningful changes were observed for PLA2 and NLC4 proteins level and between iNOS protein expression and mRNA encoding iNOS protein amount. The EMF exposure exerted the strongest effect on iNOS encoding mRNA in cells pre-stimulated with LPS or SEB and phagocytosing LBs. The influence of EMF on phagocytosis was experimentally proved for the first time and there is a need for further investigations in term of the usage of EMF as a prospect, supportive therapy.
Collapse
Affiliation(s)
- Piotr Piszczek
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta street 18, 31-121 Cracow, Poland.
| | - Karolina Wójcik-Piotrowicz
- Department of Biophysics, Jagiellonian University Medical College, Łazarza street 16, 31-530 Cracow, Poland
| | - Piotr Guzdek
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Lotników street 32/46, 02-668 Warsaw, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta street 18, 31-121 Cracow, Poland
| | - Jolanta Kaszuba-Zwoińska
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta street 18, 31-121 Cracow, Poland
| |
Collapse
|
6
|
Zhang P, Gu Y, Fang H, Cao Y, Wang J, Liu H, Zhang H, Li H, He H, Li R, Lin C, Xu J. Intratumoral IL-1R1 expression delineates a distinctive molecular subset with therapeutic resistance in patients with gastric cancer. J Immunother Cancer 2022; 10:jitc-2021-004047. [PMID: 35110359 PMCID: PMC8811600 DOI: 10.1136/jitc-2021-004047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background With the essential role of interleukin-1 signaling in cancer-related inflammation, IL-1R1, the main receptor for both IL-1α and IL-1β, demonstrated therapeutic potential in several types of cancer, which has been put into clinical trials. However, the expression profile and critical role of IL-1R1 in gastric cancer (GC) remain obscure. This study aimed to investigate the prognostic significance of IL-1R1 expression and its predictive value for chemotherapy and immunotherapy in GC. Methods The study enrolled three cohorts, consisting of 409 tumor microarray specimens of GC patients from Zhongshan Hospital, 341 transcriptional data from The Cancer Genome Atlas, and 45 transcriptional data from patients treated with pembrolizumab. IL-1R1 mRNA expression was directly acquired from public datasets, and we also detected IL-1R1 protein expression on tumor microarray by immunohistochemistry. Finally, the associations of IL-1R1 expression with clinical outcomes, immune contexture, and genomic features were analyzed. Results High IL-1R1 expression predicted poor prognosis and inferior responsiveness to both 5-fluorouracil-based adjuvant chemotherapy (ACT) and immune checkpoint blockade (ICB). IL-1R1 fostered an immunosuppressive microenvironment characterized by upregulated M2 macrophages and exhausted CD8+ T cells infiltration. Moreover, the expression of IL-1R1 was intrinsically linked to genomic alterations associated with targeted therapies in GC. Conclusions IL-1R1 served as an independent prognosticator and predictive biomarker for ACT and ICB in GC. Furthermore, IL-1R1 antagonists could be a novel agent alone or combined with current therapeutic strategies in GC.
Collapse
Affiliation(s)
- Puran Zhang
- Department of Biochemistry and Molecular Biology, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Yun Gu
- Department of Biochemistry and Molecular Biology, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Hanji Fang
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yifan Cao
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jieti Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, Fudan University School of Basic Medical Sciences, Shanghai, China
| |
Collapse
|
7
|
Li Y, Qiao K, Zhang X, Liu H, Zhang H, Li Z, Liu Y, Sun T. Targeting myeloid-derived suppressor cells to attenuate vasculogenic mimicry and synergistically enhance the anti-tumor effect of PD-1 inhibitor. iScience 2021; 24:103392. [PMID: 34841231 PMCID: PMC8605339 DOI: 10.1016/j.isci.2021.103392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/21/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) enhance the proliferation of endothelial cells to stimulate angiogenesis. However, many aggressive malignant tumors do not have endothelial cell-dependent blood vessels in the early stage and instead generate microcirculation by forming vasculogenic mimicry (VM). To date, the relationship between MDSCs and tumor cells remains the focus of ongoing studies. In this work, MDSCs were co-cultured with mouse melanoma cells and can enhance proliferation and VM formation of melanoma cells. For MDSCs targeting, doxycycline (DOX) was found to selectively suppress PMN-MDSCs but has no influence on T cells. In addition, DOX pretreatment substantially reduced the promoting ability of MDSCs for the VM formation of B16-F10 cells. DOX also inhibited tumor growth and enhanced the antitumor activity of PD-1 inhibitors in C57BL6 and BALB/c mice subcutaneously inoculated with B16-F10 and 4T1 cells, respectively. In conclusion, the combination of DOX and PD-1 inhibitor could be an anticancer strategy. MDSCs accumulated in the B16-F10 tumor-bearing mice MDSCs promote the formation of vasculogenic mimicry Doxycycline selectively suppressed PMN-MDSCs Doxycycline combined with PD-1 inhibitor significantly inhibited tumor growth
Collapse
Affiliation(s)
- Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Kailiang Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Xiaoyun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Haoyang Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Zhiyang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Yanrong Liu
- Molecular Pathology Institute of Gastrointestinal Tumors, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272013, Shandong, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
- Corresponding author
| |
Collapse
|
8
|
Heat shock protein 47 promotes cell migration and invasion through AKT signal in non-small cell lung cancer. Anticancer Drugs 2021; 33:268-277. [PMID: 34751174 DOI: 10.1097/cad.0000000000001262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lung cancer is one of the most lethal malignancies, with the highest number of cases and deaths. Non-small cell lung cancer (NSCLC) is the most ordinary type of pathology in lung cancer. Meanwhile, various researchers have reported that heat shock protein 47 (HSP47) plays a vital regulatory role in cancer. However, the role of HSP47 in NSCLC is not clear. Consequently, the current study set out to investigate the role of HSP47 in the pathogenesis of NSCLC. First, we evaluated the expression patterns of HSP47 in NSCLC cell lines related to human normal lung epithelial cells, and HSP47 was found to be highly expressed in NSCLC cell lines. In addition, inhibiting the expression of HSP47 brought about marked repression in cell proliferation, migration and invasion in PC-9 cells. On the contrary, cell proliferation, migration and invasion were all elevated after over-expression of HSP47. Mechanistical experimentation further illustrated that protein kinase B (AKT) signal was repressed after inhibition of HSP47, and the influence of sh-HSP47 on cell proliferation, migration and invasion was countered by epidermal growth factor. Lastly, in-vivo animal models demonstrated that inhibition of HSP47 repressed cell tumorigenesis and AKT signal. Collectively, our findings illustrated that HSP47 was highly expressed in NSCLC cell lines, whereas inhibition of HSP47 repressed cell migration and invasion by diminishing the AKT signal. Inhibition of HSP47 also exhibited strong therapeutic effects on NSCLC in vivo.
Collapse
|
9
|
Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther 2021; 6:362. [PMID: 34620838 PMCID: PMC8497485 DOI: 10.1038/s41392-021-00670-9] [Citation(s) in RCA: 440] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/21/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Kai Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Houhui Shi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Benxia Zhang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Xuejin Ou
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Qizhi Ma
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Yue Chen
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Pei Shu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, and Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yongsheng Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China. .,Clinical Trial Center, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
10
|
Xu L, Cai P, Li X, Wu X, Gao J, Liu W, Yang J, Xu Q, Guo W, Gu Y. Inhibition of NLRP3 inflammasome activation in myeloid-derived suppressor cells by andrographolide sulfonate contributes to 5-FU sensitization in mice. Toxicol Appl Pharmacol 2021; 428:115672. [PMID: 34391754 DOI: 10.1016/j.taap.2021.115672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023]
Abstract
5-Fluorouracil (5-FU)-based chemotherapy is the first-line recommended regimen in colorectal cancer (CRC), but resistance limits its clinical application. Andrographolide sulfonate, a traditional Chinese medicine, is mainly used to treat infectious diseases. In the present study, we reported that andrographolide sulfonate could significantly inhibit the growth of transplanted CT26 colon cancer in mice and improve survival when combined with 5-FU. Furthermore, TUNEL assay and immunohistochemistry analysis of proliferating cell nuclear antigen, Ki-67 and p-STAT3 confirmed that co-treatment could inhibit tumor proliferation and promote apoptosis. In tumor tissues of groups that received 5-FU and andrographolide sulfonate, CD4+ and CD8+ T cell infiltration was increased, and the expression of IFN-γ and Granzyme B detected by immunohistochemistry and qPCR was upregulated, reflecting improved antitumor immunity. Finally, we verified that 5-FU significantly activated the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in myeloid-derived suppressor cells (MDSCs) and that andrographolide sulfonate reversed this process to sensitize cells to 5-FU. In summary, andrographolide sulfonate synergistically enhanced antitumor effects and improved antitumor immunity by inhibiting 5-FU-induced NLRP3 activation in MDSCs. These findings provide a novel strategy to address 5-FU resistance in the treatment of CRC.
Collapse
Affiliation(s)
- Lingyan Xu
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 2100029, China
| | - Peifen Cai
- The Jiangning Affiliated Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Xiaofei Li
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 2100029, China
| | - Xiaohan Wu
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 2100029, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiashu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Yanhong Gu
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 2100029, China.
| |
Collapse
|
11
|
Papafragkos I, Markaki E, Kalpadakis C, Verginis P. Decoding the Myeloid-Derived Suppressor Cells in Lymphoid Malignancies. J Clin Med 2021; 10:jcm10163462. [PMID: 34441758 PMCID: PMC8397155 DOI: 10.3390/jcm10163462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid precursors which emerged as a potent regulator of the immune system, exerting suppressive properties in diverse disease settings. In regards to cancer, MDSCs have an established role in solid tumors; however, their contribution to immune regulation during hematologic malignancies and particularly in lymphomas remains ill-defined. Herein focused on lymphoma, we discuss the literature on MDSC cells in all histologic types, and we also refer to lessons learned by animal models of lymphoma. Furthermore, we elaborate on future directions and unmet needs and challenges in the MDSC field related to lymphoma malignancies which may shed light on the complex nature of the immune system in malignancies.
Collapse
Affiliation(s)
- Iosif Papafragkos
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (I.P.); (E.M.)
| | - Efrosyni Markaki
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (I.P.); (E.M.)
| | - Christina Kalpadakis
- Laboratory of Haematology, Division of Laboratory Medicine, Medical School, University of Crete, 71003 Heraklion, Greece
- Department of Laboratory Haematology, University Hospital of Heraklion, 71500 Heraklion, Greece
- Correspondence: (C.K.); (P.V.); Tel.: +30-69-4458-2738 (C.K.); +30-28-1039-4553 (P.V.)
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (I.P.); (E.M.)
- Department of Laboratory Haematology, University Hospital of Heraklion, 71500 Heraklion, Greece
- Correspondence: (C.K.); (P.V.); Tel.: +30-69-4458-2738 (C.K.); +30-28-1039-4553 (P.V.)
| |
Collapse
|
12
|
Balahura LR, Dinescu S, Balaș M, Cernencu A, Lungu A, Vlăsceanu GM, Iovu H, Costache M. Cellulose Nanofiber-Based Hydrogels Embedding 5-FU Promote Pyroptosis Activation in Breast Cancer Cells and Support Human Adipose-Derived Stem Cell Proliferation, Opening New Perspectives for Breast Tissue Engineering. Pharmaceutics 2021; 13:pharmaceutics13081189. [PMID: 34452150 PMCID: PMC8400202 DOI: 10.3390/pharmaceutics13081189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
The structure and biocompatibility analysis of a hydrogel based on cellulose nanofibers (CNFs) combined with alginate/pectin (A.CNF or P.CNF) and enriched with 1% or 5% 5-FU revealed more favorable properties for the cellular component when pectin was dispersed within CNFs. 5-Fluorouracil (5-FU) is an antimetabolite fluoropyrimidine used as antineoplastic drug for the treatment of multiple solid tumors. 5-FU activity leads to caspase-1 activation, secretion and maturation of interleukins (IL)-1, IL-18 and reactive oxygen species (ROS) generation. Furthermore, the effects of embedding 5-FU in P.CNF were explored in order to suppress breast tumor cell growth and induce inflammasome complex activation together with extra- and intracellular ROS generation. Exposure of tumor cells to P.CNF/5-FU resulted in a strong cytotoxic effect, an increased level of caspase-1 released in the culture media and ROS production—the latter directly proportional to the concentration of anti-tumor agent embedded in the scaffolds. Simultaneously, 5-FU determined the increase of p53 and caspase-1 expressions, both at gene and protein levels. In conclusion, P.CNF/5-FU scaffolds proved to be efficient against breast tumor cells growth due to pyroptosis induction. Furthermore, biocompatibility and the potential to support human adipose-derived stem cell growth were demonstrated, suggesting that these 3D systems could be used in soft tissue reconstruction post-mastectomy.
Collapse
Affiliation(s)
- Liliana-Roxana Balahura
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.-R.B.); (M.B.); (M.C.)
- Department of Immunology, National Institute for Research and Development in Biomedical Pathology and Biomedical Sciences “Victor Babes”, 050096 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.-R.B.); (M.B.); (M.C.)
- Research Institute of University of Bucharest, 050107 Bucharest, Romania
- Correspondence: ; Tel.: +40-724511587
| | - Mihaela Balaș
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.-R.B.); (M.B.); (M.C.)
| | - Alexandra Cernencu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.C.); (A.L.); (G.M.V.); (H.I.)
| | - Adriana Lungu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.C.); (A.L.); (G.M.V.); (H.I.)
| | - George Mihail Vlăsceanu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.C.); (A.L.); (G.M.V.); (H.I.)
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.C.); (A.L.); (G.M.V.); (H.I.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.-R.B.); (M.B.); (M.C.)
- Research Institute of University of Bucharest, 050107 Bucharest, Romania
| |
Collapse
|
13
|
Rébé C, Ghiringhelli F, Garrido C. Can the hyperthermia-mediated heat shock factor/heat shock protein 70 pathway dampen the cytokine storm during SARS-CoV-2 infection? Br J Pharmacol 2020; 179:4910-4916. [PMID: 33314076 DOI: 10.1111/bph.15343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/05/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major global public health problem. Infection by this virus involves many pathophysiological processes, such as a "cytokine storm," that is, very aggressive inflammatory response that offers new perspectives for the management and treatment of patients. Here, we analyse relevant mechanism involved in the hyperthermia-mediated heat shock factors (HSFs)/heat shock proteins (HSP)70 pathway which may provide a possible treatment tool.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, Dijon, France
| | - Carmen Garrido
- INSERM LNC UMR1231, University of Bourgogne Franche-Comté, Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
14
|
Rébé C, Ghiringhelli F. Interleukin-1β and Cancer. Cancers (Basel) 2020; 12:E1791. [PMID: 32635472 PMCID: PMC7408158 DOI: 10.3390/cancers12071791] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Within a tumor, IL-1β is produced and secreted by various cell types, such as immune cells, fibroblasts, or cancer cells. The IL1B gene is induced after "priming" of the cells and a second signal is required to allow IL-1β maturation by inflammasome-activated caspase-1. IL-1β is then released and leads to transcription of target genes through its ligation with IL-1R1 on target cells. IL-1β expression and maturation are guided by gene polymorphisms and by the cellular context. In cancer, IL-1β has pleiotropic effects on immune cells, angiogenesis, cancer cell proliferation, migration, and metastasis. Moreover, anti-cancer treatments are able to promote IL-1β production by cancer or immune cells, with opposite effects on cancer progression. This raises the question of whether or not to use IL-1β inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|