1
|
Viot J, Loyon R, Adib N, Laurent-Puig P, de Reyniès A, André F, Monnien F, André T, Svrcek M, Turpin A, Selmani Z, Arnould L, Guyard L, Gilbert N, Boureux A, Adotevi O, Vienot A, Abdeljaoued S, Vernerey D, Borg C, Gautheret D. Deciphering human endogenous retrovirus expression in colorectal cancers: exploratory analysis regarding prognostic value in liver metastases. EBioMedicine 2025; 116:105727. [PMID: 40381378 PMCID: PMC12145686 DOI: 10.1016/j.ebiom.2025.105727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Human Endogenous RetroVirus (HERV) expression in tumours reflects epigenetic dysregulation of cancer and an oncogenic factor through promoter/enhancer action on genes. While more than 50% of colorectal cancers develop liver metastases, HERV has not been studied in this context. METHODS We collected 400 RNA-seq samples from over 200 patients with primary and liver metastases, including public data and a novel set of 200 samples. FINDINGS We observed global stability of HERV expression between liver metastases and primary colorectal cancers, suggesting an early oncogenic footprint. We identified a list of 17 HERV loci for liver metastatic colorectal cancer (lmCRC) characterization; with tumour-specificity validated in single-cell metastatic colorectal cancer data and normal tissue bulk RNA-seq. Eleven loci produced HERV-derived peptides as per tandem mass spectrometry from primary colorectal cancer. Six loci were associated with the risk of relapse after lmCRC surgery. Four, HERVH_Xp22.32a, HERVH_20p11.23b, HERVH_13q33.3, HERVH_13q31.3, had adverse prognostic value (log-rank p-value 0.028, 0.0083, 9e-4, 0.05, respectively) while two, HERVH_Xp22.2c (log-rank p-value 0.032) and HERVH_8q21.3b (in multivariable models) were associated with better prognosis. Moreover, the markers showed a cumulative effect on survival when expressed. Some were associated with decreased cytotoxic immune cells and most of them correlated with cell cycle pathways. INTERPRETATION These findings provide insights into the lmCRC transcriptome landscape by suggesting prognostic markers and potential therapeutic targets. FUNDING This work was supported by funding from institutional grants from Inserm, EFS, University of Bourgogne Franche-Comté, national found "Agence Nationale de la Recherche - ANR-JCJC: Projet HERIC and ANR-22-CE45-0007", and "La ligue contre le cancer".
Collapse
Affiliation(s)
- Julien Viot
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France; Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.
| | - Romain Loyon
- Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Nawfel Adib
- Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Pierre Laurent-Puig
- Department of Biology, Institut du Cancer Paris CARPEM, APHP, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, EPIGENETEC, Paris 75006, France
| | - Aurélien de Reyniès
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, EPIGENETEC, Paris 75006, France
| | - Fabrice André
- Paris-Saclay University, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Franck Monnien
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France; Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Thierry André
- Department of Medical Oncology, Sorbonne University, Saint-Antoine Hospital, AP-HP, Paris, France
| | - Magali Svrcek
- Department of Pathology, Saint-Antoine Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Anthony Turpin
- Department of Oncology, Lille University Hospital, France; CNRS UMR9020, INSERM UMR1277, University of Lille, Institut Pasteur, Lille, France
| | - Zohair Selmani
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France; Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Laurent Arnould
- Department of Tumour Biology and Pathology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France; CCRB Ferdinand Cabanne de Dijon, France
| | - Laura Guyard
- Department of Tumour Biology and Pathology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France; CCRB Ferdinand Cabanne de Dijon, France
| | - Nicolas Gilbert
- IRMB, INSERM U1183, Hopital Saint-Eloi, Universite de Montpellier, Montpellier, France
| | - Anthony Boureux
- IRMB, INSERM U1183, Hopital Saint-Eloi, Universite de Montpellier, Montpellier, France
| | - Olivier Adotevi
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France; Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Angélique Vienot
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France; Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Syrine Abdeljaoued
- Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Dewi Vernerey
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France
| | - Christophe Borg
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France; Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette 91190, France
| |
Collapse
|
2
|
Grundy EE, Shaw LC, Wang L, Lee AV, Argueta JC, Powell DJ, Ostrowski M, Jones RB, Cruz CRY, Gordish-Dressman H, Chappell NP, Bollard CM, Chiappinelli KB. A T cell receptor specific for an HLA-A*03:01-restricted epitope in the endogenous retrovirus ERV-K-Env exhibits limited recognition of its cognate epitope. Mob DNA 2024; 15:19. [PMID: 39385229 PMCID: PMC11462856 DOI: 10.1186/s13100-024-00333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Transposable elements (TEs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the TE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of previously identified epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity against cancer cells. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, in vitro priming of several healthy donors with this epitope of ERV-K-Env did not result in target antigen specificity. These data suggest that the T cell receptor is a poor candidate for targeting this specific ERV-K-Env epitope and has limited potential as a T cell therapy for OC.
Collapse
Affiliation(s)
- Erin E Grundy
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
| | - Lauren C Shaw
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Loretta Wang
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
| | - Abigail V Lee
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
| | - James Castro Argueta
- The George Washington School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto, Canada
| | - R Brad Jones
- Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - C Russell Y Cruz
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
- Center for Cancer and Immunology, , Children's National Hospital, Washington, DC, United States
| | - Heather Gordish-Dressman
- The George Washington School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
- The Center for Translational Research, Children's National Hospital, Washington, DC, USA
| | | | - Catherine M Bollard
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
- Center for Cancer and Immunology, , Children's National Hospital, Washington, DC, United States
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA.
- The George Washington University Cancer Center, Washington, DC, USA.
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA.
| |
Collapse
|
3
|
Zheng J, Feng H, Lin J, Zhou J, Xi Z, Zhang Y, Ling F, Liu Y, Wang J, Hou T, Xing F, Li Y. KDM3A Ablation Activates Endogenous Retrovirus Expression to Stimulate Antitumor Immunity in Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309983. [PMID: 39031630 PMCID: PMC11515915 DOI: 10.1002/advs.202309983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/04/2024] [Indexed: 07/22/2024]
Abstract
The success of immunotherapy for cancer treatment is limited by the presence of an immunosuppressive tumor microenvironment (TME); Therefore, identifying novel targets to that can reverse this immunosuppressive TME and enhance immunotherapy efficacy is essential. In this study, enrichment analysis based on publicly available single-cell and bulk RNA sequencing data from gastric cancer patients are conducted, and found that tumor-intrinsic interferon (IFN) plays a central role in TME regulation. The results shows that KDM3A over-expression suppresses the tumor-intrinsic IFN response and inhibits KDM3A, either genomically or pharmacologically, which effectively promotes IFN responses by activating endogenous retroviruses (ERVs). KDM3A ablation reconfigures the dsRNA-MAVS-IFN axis by modulating H3K4me2, enhancing the infiltration and function of CD8 T cells, and simultaneously reducing the presence of regulatory T cells, resulting in a reshaped TME in vivo. In addition, combining anti-PD1 therapy with KDM3A inhibition effectively inhibited tumor growth. In conclusions, this study highlights KDM3A as a potential target for TME remodeling and the enhancement of antitumor immunity in gastric cancer through the regulation of the ERV-MAVS-IFN axis.
Collapse
Affiliation(s)
- Jiabin Zheng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Huolun Feng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jiatong Lin
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jianlong Zhou
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Zhihui Xi
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Yucheng Zhang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Fa Ling
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yongfeng Liu
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Junjiang Wang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Tieying Hou
- Medical Experimental CenterShenzhen Nanshan People's HospitalShenzhenGuangdong518052China
- Shenzhen University Medical SchoolShenzhenGuangdong518073China
| | - Fan Xing
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Yong Li
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| |
Collapse
|
4
|
Hu Z, Guo X, Li Z, Meng Z, Huang S. The neoantigens derived from transposable elements - A hidden treasure for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189126. [PMID: 38849060 DOI: 10.1016/j.bbcan.2024.189126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Neoantigen-based therapy is a promising approach that selectively activates the immune system of the host to recognize and eradicate cancer cells. Preliminary clinical trials have validated the feasibility, safety, and immunogenicity of personalized neoantigen-directed vaccines, enhancing their effectiveness and broad applicability in immunotherapy. While many ongoing oncological trials concentrate on neoantigens derived from mutations, these targets do not consistently provoke an immune response in all patients harboring the mutations. Additionally, tumors like ovarian cancer, which have a low tumor mutational burden (TMB), may be less amenable to mutation-based neoantigen therapies. Recent advancements in next-generation sequencing and bioinformatics have uncovered a rich source of neoantigens from non-canonical RNAs associated with transposable elements (TEs). Considering the substantial presence of TEs in the human genome and the proven immunogenicity of TE-derived neoantigens in various tumor types, this review investigates the latest findings on TE-derived neoantigens, examining their clinical implications, challenges, and unique advantages in enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Zhixiang Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyi Guo
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziteng Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Fu M, Deng F, Chen J, Fu L, Lei J, Xu T, Chen Y, Zhou J, Gao Q, Ding H. Current data and future perspectives on DNA methylation in ovarian cancer (Review). Int J Oncol 2024; 64:62. [PMID: 38757340 PMCID: PMC11095605 DOI: 10.3892/ijo.2024.5650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Ovarian cancer (OC) represents the most prevalent malignancy of the female reproductive system. Its distinguishing features include a high aggressiveness, substantial morbidity and mortality, and a lack of apparent symptoms, which collectively pose significant challenges for early detection. Given that aberrant DNA methylation events leading to altered gene expression are characteristic of numerous tumor types, there has been extensive research into epigenetic mechanisms, particularly DNA methylation, in human cancers. In the context of OC, DNA methylation is often associated with the regulation of critical genes, such as BRCA1/2 and Ras‑association domain family 1A. Methylation modifications within the promoter regions of these genes not only contribute to the pathogenesis of OC, but also induce medication resistance and influence the prognosis of patients with OC. As such, a more in‑depth understanding of DNA methylation underpinning carcinogenesis could potentially facilitate the development of more effective therapeutic approaches for this intricate disease. The present review focuses on classical tumor suppressor genes, oncogenes, signaling pathways and associated microRNAs in an aim to elucidate the influence of DNA methylation on the development and progression of OC. The advantages and limitations of employing DNA methylation in the diagnosis, treatment and prevention of OC are also discussed. On the whole, the present literature review indicates that the DNA methylation of specific genes could potentially serve as a prognostic biomarker for OC and a therapeutic target for personalized treatment strategies. Further investigations in this field may yield more efficacious diagnostic and therapeutic alternatives for patients with OC.
Collapse
Affiliation(s)
- Mengyu Fu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fengying Deng
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jie Chen
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Fu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiahui Lei
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ting Xu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215100, P.R. China
| | - Youguo Chen
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jinhua Zhou
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qinqin Gao
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongmei Ding
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
6
|
Grundy EE, Shaw LC, Wang L, Powell DJ, Ostrowski M, Jones RB, Cruz CRY, Gordish-Dressman H, Bollard CM, Chiappinelli KB. Limited Immunogenicity of an HLA-A*03:01-restricted Epitope of Erv-k-env in Non-hiv-1 Settings: Implications for Adoptive Cell Therapy in Cancer. RESEARCH SQUARE 2024:rs.3.rs-4432372. [PMID: 38854052 PMCID: PMC11160923 DOI: 10.21203/rs.3.rs-4432372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Repetitive elements (REs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the RE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of a previously identified immunogenic epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity in non-HIV-1 settings. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, these transduced T cells were not specific for HLA-A*03:01 + OC cells nor for the cognate peptide in HLA-matched systems from multiple healthy donors. These data suggest that the ERV-K-Env epitope recognized by this T cell receptor is of low immunogenicity and has limited potential as a T cell target for OC.
Collapse
Affiliation(s)
| | | | | | | | | | - R Brad Jones
- Weill Cornell Graduate School of Medical Medical Sciences
| | | | | | | | | |
Collapse
|
7
|
Alkailani MI, Gibbings D. The Regulation and Immune Signature of Retrotransposons in Cancer. Cancers (Basel) 2023; 15:4340. [PMID: 37686616 PMCID: PMC10486412 DOI: 10.3390/cancers15174340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Advances in sequencing technologies and the bioinformatic analysis of big data facilitate the study of jumping genes' activity in the human genome in cancer from a broad perspective. Retrotransposons, which move from one genomic site to another by a copy-and-paste mechanism, are regulated by various molecular pathways that may be disrupted during tumorigenesis. Active retrotransposons can stimulate type I IFN responses. Although accumulated evidence suggests that retrotransposons can induce inflammation, the research investigating the exact mechanism of triggering these responses is ongoing. Understanding these mechanisms could improve the therapeutic management of cancer through the use of retrotransposon-induced inflammation as a tool to instigate immune responses to tumors.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| |
Collapse
|
8
|
Chang YS, Hsu MH, Chung CC, Chen HD, Tu SJ, Lee YT, Yen JC, Liu TC, Chang JG. Comprehensive Analysis and Drug Modulation of Human Endogenous Retrovirus in Hepatocellular Carcinomas. Cancers (Basel) 2023; 15:3664. [PMID: 37509325 PMCID: PMC10377948 DOI: 10.3390/cancers15143664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) play an important role in the development of cancer and many diseases. Here, we comprehensively explored the impact of HERVs on hepatocellular carcinomas (HCCs). METHODS We employed Telescope to identify HERVs and quantify their expression in the total RNA sequencing data obtained from 254 HCC samples, comprising 254 tumor tissues and 34 matched normal tissues. RESULTS In total, 3357 locus-specific activations of HERVs were differentially expressed, and 180 were correlated with patient survival. Using these 180 HERVs for classification, we found four subgroups with survival correlation. Higher expression levels of the 180 HERVs were correlated with poorer survival, while age, AFP, some mutations, and copy and structural variants differed among subgroups. The differential expression of host genes in high expression of these 180 HERVs primarily involved the activation of pathways related to immunity and infection, lipid and atherosclerosis, MAPK and NF-kB signaling, and cytokine-cytokine receptor interactions. Conversely, there was a suppression of pathways associated with RNA processing, including nucleocytoplasmic transport, surveillance and ribosome biogenesis, and transcriptional misregulation in cancer pathways. Almost all genes involved in HERV activation restriction, KRAB zinc finger proteins, RNA nucleocytoplasmic transport, stemness, HLA and antigen processing and presentation, and immune checkpoints were overexpressed in cancerous tissues, and many over-expressed HERV-related nearby genes were correlated with high HERV activation and poor survival. Twenty-three immune and stromal cells showed higher expression in non-cancerous than cancerous tissues, and seven were correlated with HERV activation. Small-molecule modulation of alternative splicing (AS) altered the expression of survival-related HERVs and their activation-related genes, as well as nearby genes. CONCLUSION Comprehensive and integrated approaches for evaluating HERV expression and their correlation with specific pathways have the potential to provide new companion diagnostics and therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ming-Hon Hsu
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chin-Chun Chung
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hong-Da Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Siang-Jyun Tu
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ya-Ting Lee
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ju-Chen Yen
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ta-Chih Liu
- Department of Hematology-Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Jan-Gowth Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
9
|
Kitsou K, Lagiou P, Magiorkinis G. Human endogenous retroviruses in cancer: Oncogenesis mechanisms and clinical implications. J Med Virol 2023; 95:e28350. [PMID: 36428242 PMCID: PMC10108094 DOI: 10.1002/jmv.28350] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022]
Abstract
Human Endogenous Retroviruses (HERVs) are viral sequences integrated into the human genome, resulting from the infection of human germ-line cells by ancient exogenous retroviruses. Despite losing their replication and retrotransposition abilities, HERVs appear to have been co-opted in human physiological functions while their aberrant expression is linked to human disease. The role of HERVs in multiple malignancies has been demonstrated, however, the extent to which HERV activation and expression participate in the development of cancer is not yet fully comprehended. In this review article, we discuss the presumed role of HERVs in carcinogenesis and their promising diagnostic and prognostic implications. Additionally, we explore recent data on the HERVs in cancer therapeutics, either through the manipulation of their expression, to induce antitumor innate immunity responses or as cancer immunotherapy targets. Finally, more precise and higher resolution high-throughput sequencing approaches will further elucidate HERV participation in human physiological and pathological processes.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian, University of Athens, Goudi, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian, University of Athens, Goudi, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian, University of Athens, Goudi, Greece
| |
Collapse
|
10
|
Sun J, Yan C, Xu D, Zhang Z, Li K, Li X, Zhou M, Hao D. Immuno-genomic characterisation of high-grade serous ovarian cancer reveals immune evasion mechanisms and identifies an immunological subtype with a favourable prognosis and improved therapeutic efficacy. Br J Cancer 2022; 126:1570-1580. [PMID: 35017656 PMCID: PMC9130248 DOI: 10.1038/s41416-021-01692-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Immunotherapy has revolutionised the field of cancer therapy and immunology, but has demonstrated limited therapeutic efficacy in high-grade serous ovarian cancer (HGSOC). METHODS Multi-omics data of 495 TCGA HGSOC tumours and RNA-seq data of 1708 HGSOC tumours were analyzed. Multivariate Cox regression analysis and meta-analyses were used to identify prognostic genes. The immune microenvironment was characterised using the ssGSEA methods for 28 immune cell types. Immunohistochemistry staining of tumour tissues of 14 patients was used to validate the key findings further. RESULTS A total of 1142 genes were identified as favourable prognostic genes, which are prevailing in immune-related pathways and the infiltration of most immune subpopulations was observed to be associated with a favourable prognosis suggesting that tumour immunogenicity was the most prominent factor associated with improved clinical outcomes and response to chemotherapy of HGSOC. We identified multiple genomic and transcriptomic determinants of immunogenicity, including the copy loss of chromosome 4q and deficiencies of the homologous recombination pathway. Finally, an immunological subtype characterised by increased infiltration of activated CD8 T cells and decreased Tregs was associated with favourable prognosis and improved therapeutic efficacy. CONCLUSIONS Our study characterised the immunogenomic landscape and refined the immunological classifications of HGSOC. This may improve the selection of patients with HGSOC who are suitable candidates for immunotherapy.
Collapse
Affiliation(s)
- Jie Sun
- School of Biomedical Engineering, Wenzhou Medical University, 325027, Wenzhou, P. R. China
| | - Congcong Yan
- School of Biomedical Engineering, Wenzhou Medical University, 325027, Wenzhou, P. R. China
| | - Dandan Xu
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Zicheng Zhang
- School of Biomedical Engineering, Wenzhou Medical University, 325027, Wenzhou, P. R. China
| | - Ke Li
- School of Biomedical Engineering, Wenzhou Medical University, 325027, Wenzhou, P. R. China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, 150081, Harbin, P. R. China
| | - Meng Zhou
- School of Biomedical Engineering, Wenzhou Medical University, 325027, Wenzhou, P. R. China.
| | - Dapeng Hao
- Department of Pathology, Harbin Medical University, 150081, Harbin, P. R. China.
| |
Collapse
|
11
|
Spiliopoulou P, Spear S, Mirza H, Garner I, McGarry L, Grundland-Freile F, Cheng Z, Ennis DP, Iyer N, McNamara S, Natoli M, Mason S, Blyth K, Adams PD, Roxburgh P, Fuchter MJ, Brown B, McNeish IA. Dual G9A/EZH2 Inhibition Stimulates Antitumor Immune Response in Ovarian High-Grade Serous Carcinoma. Mol Cancer Ther 2022; 21:522-534. [PMID: 35131874 PMCID: PMC9377747 DOI: 10.1158/1535-7163.mct-21-0743] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Ovarian high-grade serous carcinoma (HGSC) prognosis correlates directly with presence of intratumoral lymphocytes. However, cancer immunotherapy has yet to achieve meaningful survival benefit in patients with HGSC. Epigenetic silencing of immunostimulatory genes is implicated in immune evasion in HGSC and re-expression of these genes could promote tumor immune clearance. We discovered that simultaneous inhibition of the histone methyltransferases G9A and EZH2 activates the CXCL10-CXCR3 axis and increases homing of intratumoral effector lymphocytes and natural killer cells while suppressing tumor-promoting FoxP3+ CD4 T cells. The dual G9A/EZH2 inhibitor HKMTI-1-005 induced chromatin changes that resulted in the transcriptional activation of immunostimulatory gene networks, including the re-expression of elements of the ERV-K endogenous retroviral family. Importantly, treatment with HKMTI-1-005 improved the survival of mice bearing Trp53-/- null ID8 ovarian tumors and resulted in tumor burden reduction. These results indicate that inhibiting G9A and EZH2 in ovarian cancer alters the immune microenvironment and reduces tumor growth and therefore positions dual inhibition of G9A/EZH2 as a strategy for clinical development.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Spear
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Hasan Mirza
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Ian Garner
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Lynn McGarry
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Fabio Grundland-Freile
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Zhao Cheng
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Darren P. Ennis
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nayana Iyer
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Sophie McNamara
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Marina Natoli
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Susan Mason
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Karen Blyth
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Peter D. Adams
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California
| | - Patricia Roxburgh
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew J. Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Bob Brown
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Iain A. McNeish
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Kitsou K, Iliopoulou M, Spoulou V, Lagiou P, Magiorkinis G. Viral Causality of Human Cancer and Potential Roles of Human Endogenous Retroviruses in the Multi-Omics Era: An Evolutionary Epidemiology Review. Front Oncol 2021; 11:687631. [PMID: 34778024 PMCID: PMC8586426 DOI: 10.3389/fonc.2021.687631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Being responsible for almost 12% of cancers worldwide, viruses are among the oldest known and most prevalent oncogenic agents. The quality of the evidence for the in vivo tumorigenic potential of microorganisms varies, thus accordingly, viruses were classified in 4 evidence-based categories by the International Agency for Research on Cancer in 2009. Since then, our understanding of the role of viruses in cancer has significantly improved, firstly due to the emergence of high throughput sequencing technologies that allowed the “brute-force” recovery of unknown viral genomes. At the same time, multi-omics approaches unravelled novel virus-host interactions in stem-cell biology. We now know that viral elements, either exogenous or endogenous, have multiple sometimes conflicting roles in human pathophysiology and the development of cancer. Here we integrate emerging evidence on viral causality in human cancer from basic mechanisms to clinical studies. We analyze viral tumorigenesis under the scope of deep-in-time human-virus evolutionary relationships and critically comment on the evidence through the eyes of clinical epidemiology, firstly by reviewing recognized oncoviruses and their mechanisms of inducing tumorigenesis, and then by examining the potential role of integrated viruses in our genome in the process of carcinogenesis.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Iliopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Chen R, Ishak CA, De Carvalho DD. Endogenous Retroelements and the Viral Mimicry Response in Cancer Therapy and Cellular Homeostasis. Cancer Discov 2021; 11:2707-2725. [PMID: 34649957 DOI: 10.1158/2159-8290.cd-21-0506] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Features of the cancer epigenome distinguish cancers from their respective cell of origin and establish therapeutic vulnerabilities that can be exploited through pharmacologic inhibition of DNA- or histone-modifying enzymes. Epigenetic therapies converge with cancer immunotherapies through "viral mimicry," a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons. This review describes the initial characterization and expansion of viral mimicry-inducing approaches as well as features that "prime" cancers for viral mimicry induction. Increased understanding of viral mimicry in therapeutic contexts suggests potential physiologic roles in cellular homeostasis. SIGNIFICANCE: Recent literature establishes elevated cytosolic double strand RNA (dsRNA) levels as a cancer-specific therapeutic vulnerability that can be elevated by viral mimicry-inducing therapies beyond tolerable thresholds to induce antiviral signaling and increase dependence on dsRNA stress responses mediated by ADAR1. Improved understanding of viral mimicry signaling and tolerance mechanisms reveals synergistic treatment combinations with epigenetic therapies that include inhibition of BCL2, ADAR1, and immune checkpoint blockade. Further characterization of viral mimicry tolerance may identify contexts that maximize efficacy of conventional cancer therapies.
Collapse
Affiliation(s)
- Raymond Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
14
|
McDonald JI, Diab N, Arthofer E, Hadley M, Kanholm T, Rentia U, Gomez S, Yu A, Grundy EE, Cox O, Topper MJ, Xing X, Strissel PL, Strick R, Wang T, Baylin SB, Chiappinelli KB. Epigenetic Therapies in Ovarian Cancer Alter Repetitive Element Expression in a TP53-Dependent Manner. Cancer Res 2021; 81:5176-5189. [PMID: 34433584 PMCID: PMC8530980 DOI: 10.1158/0008-5472.can-20-4243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian carcinomas are particularly deadly due to intratumoral heterogeneity, resistance to standard-of-care therapies, and poor response to alternative treatments such as immunotherapy. Targeting the ovarian carcinoma epigenome with DNA methyltransferase inhibitors (DNMTi) or histone deacetylase inhibitors (HDACi) increases immune signaling and recruits CD8+ T cells and natural killer cells to fight ovarian carcinoma in murine models. This increased immune activity is caused by increased transcription of repetitive elements (RE) that form double-stranded RNA (dsRNA) and trigger an IFN response. To understand which REs are affected by epigenetic therapies in ovarian carcinoma, we assessed the effect of DNMTi and HDACi on ovarian carcinoma cell lines and patient samples. Subfamily-level (TEtranscripts) and individual locus-level (Telescope) analysis of REs showed that DNMTi treatment upregulated more REs than HDACi treatment. Upregulated REs were predominantly LTR and SINE subfamilies, and SINEs exhibited the greatest loss of DNA methylation upon DNMTi treatment. Cell lines with TP53 mutations exhibited significantly fewer upregulated REs with epigenetic therapy than wild-type TP53 cell lines. This observation was validated using isogenic cell lines; the TP53-mutant cell line had significantly higher baseline expression of REs but upregulated fewer upon epigenetic treatment. In addition, p53 activation increased expression of REs in wild-type but not mutant cell lines. These data give a comprehensive, genome-wide picture of RE chromatin and transcription-related changes in ovarian carcinoma after epigenetic treatment and implicate p53 in RE transcriptional regulation. SIGNIFICANCE: This study identifies the repetitive element targets of epigenetic therapies in ovarian carcinoma and indicates a role for p53 in this process.
Collapse
Affiliation(s)
- James I McDonald
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Noor Diab
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Elisa Arthofer
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Melissa Hadley
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Tomas Kanholm
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
- The Institute for Biomedical Sciences at the George Washington University, Washington, DC
| | - Uzma Rentia
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Stephanie Gomez
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
- The Institute for Biomedical Sciences at the George Washington University, Washington, DC
| | - Angela Yu
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Erin E Grundy
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
- The Institute for Biomedical Sciences at the George Washington University, Washington, DC
| | - Olivia Cox
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Michael J Topper
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Xiaoyun Xing
- The Edison Family Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Pamela L Strissel
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ting Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Stephen B Baylin
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, D.C.
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| |
Collapse
|
15
|
Steiner MC, Marston JL, Iñiguez LP, Bendall ML, Chiappinelli KB, Nixon DF, Crandall KA. Locus-Specific Characterization of Human Endogenous Retrovirus Expression in Prostate, Breast, and Colon Cancers. Cancer Res 2021; 81:3449-3460. [PMID: 33941616 PMCID: PMC8260468 DOI: 10.1158/0008-5472.can-20-3975] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Human endogenous retroviruses (HERV) have been implicated in a variety of diseases including cancers. Recent research implicates HERVs in epigenetic gene regulation. Here we utilize a recently developed bioinformatics tool for identifying HERV expression at the locus-specific level to identify differential expression of HERVs in matched tumor-normal RNA-sequencing (RNA-seq) data from The Cancer Genome Atlas. Data from 52 prostate cancer, 111 breast cancer, and 24 colon cancer cases were analyzed. Locus-specific analysis identified active HERV elements and differentially expressed HERVs in prostate cancer, breast cancer, and colon cancer. In addition, differentially expressed host genes were identified across prostate, breast, and colon cancer datasets, respectively, including several involved in demethylation and antiviral response pathways, supporting previous findings regarding the pathogenic mechanisms of HERVs. A majority of differentially expressed HERVs intersected protein coding genes or lncRNAs in each dataset, and a subset of differentially expressed HERVs intersected differentially expressed genes in prostate, breast, and colon cancers, providing evidence towards regulatory function. Finally, patterns in HERV expression were identified in multiple cancer types, with 155 HERVs differentially expressed in all three cancer types. This analysis extends previous results identifying HERV transcription in cancer RNA-seq datasets to a locus-specific level, and in doing so provides a foundation for future studies investigating the functional role of HERV in cancers and identifies a number of novel targets for cancer biomarkers and immunotherapy. SIGNIFICANCE: Expressed human endogenous retroviruses are mapped at locus-specific resolution and linked to specific pathways to identify potential biomarkers and therapeutic targets in prostate, breast, and colon cancers.
Collapse
Affiliation(s)
- Margaret C Steiner
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, D.C
| | - Jez L Marston
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Luis P Iñiguez
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Matthew L Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, D.C
- The GW Cancer Center, The George Washington University, Washington, D.C
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, D.C.
- The GW Cancer Center, The George Washington University, Washington, D.C
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, D.C
| |
Collapse
|