1
|
Nelli F, Fabbri A, Botticelli A, Giannarelli D, Marrucci E, Fiore C, Virtuoso A, Berrios JRG, Scagnoli S, Pisegna S, Cirillo A, Panichi V, Massari A, Silvestri MA, Ruggeri EM. Immune responses and clinical outcomes following the third dose of SARS-CoV-2 mRNA-BNT162b2 vaccine in advanced breast cancer patients receiving targeted therapies: a prospective study. Front Oncol 2023; 13:1280416. [PMID: 38023235 PMCID: PMC10662103 DOI: 10.3389/fonc.2023.1280416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Metastatic breast cancer patients are the most prevalent oncology population with advanced disease facing COVID-19 pandemic. Immune responses after mRNA-based vaccination during treatment with CDK4/6 inhibitors or HER2-directed agents remain unclear. We conducted a prospective analysis to elucidate changes in antibody titers and lymphocyte counts following full course of mRNA-BNT162b2 (tozinameran) vaccination in recipients undergoing these targeted therapies. Methods Patients who had received a booster dosing and had been treated for at least 6 months were eligible. Antibody titers against SARS-CoV-2 spike protein were measured at four subsequent time points. Immunophenotyping of circulating lymphocytes was performed before the third dose of tozinameran and four weeks later to quantify the absolute counts of CD3+CD4+ T-helper cells, CD3+CD8+ T-cytotoxic cells, CD19+ B cells, and CD56+CD16+ NK cells. We also assessed the incidence of breakthrough infections and investigated whether immune changes affect time-to-treatment failure (TTF) after booster vaccination. Results The current analysis included 69 patients, of whom 38 (55%) and 31 (45%) were being treated with CDK4/6 inhibitors and HER2-targeted therapies, respectively. All participants received a third dose of tozinameran between September 23 and October 7, 2021. Multivariate analysis revealed that CDK4/6 inhibition predicted a significantly impaired humoral response after the booster dose. This detrimental effect was also evident for T-helper cell counts before the third immunization, but it disappeared in the subsequent evaluation. After a median follow-up of 22.3 months, we observed 19 (26%) cases of COVID-19 outbreaks, all experiencing favorable clinical outcomes. Univariate analysis showed a significant association between the onset of SARS-CoV-2 infections and the use of CDK4/6 inhibitors, as well as with an impaired antibody and T-helper cell response. Only the last two covariates remained independent predictors after multivariate testing. Dynamic variations in antibody titers and T-helper cell counts did not affect TTF in multivariate regression analysis. Conclusions Our results confirm that the immune response to tozinameran is impaired by CDK4/6 inhibitors, increasing the odds of breakthrough infections despite the third vaccine dose. Current evidence recommends maintaining efforts to provide booster immunizations to the most vulnerable cancer patients, including those with advanced breast cancer undergoing CDK4/6 inhibition.
Collapse
Affiliation(s)
- Fabrizio Nelli
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Agnese Fabbri
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Diana Giannarelli
- Biostatistics Unit, Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Eleonora Marrucci
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Cristina Fiore
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Antonella Virtuoso
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Julio Rodrigo Giron Berrios
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Simone Scagnoli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Simona Pisegna
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Alessio Cirillo
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Valentina Panichi
- Department of Oncology and Hematology, Cytofluorimetry Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Annalisa Massari
- Department of Oncology and Hematology, Pathology Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Maria Assunta Silvestri
- Department of Oncology and Hematology, Microbiology and Virology Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Enzo Maria Ruggeri
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| |
Collapse
|
2
|
Nelli F, Giannarelli D, Fabbri A, Virtuoso A, Giron Berrios JR, Marrucci E, Fiore C, Schirripa M, Signorelli C, Chilelli MG, Primi F, Panichi V, Topini G, Silvestri MA, Ruggeri EM. Immune-related adverse events and disease outcomes after the third dose of SARS-CoV-2 mRNA-BNT162b2 vaccine in cancer patients receiving immune checkpoint inhibitors. Cancer Immunol Immunother 2023; 72:3217-3228. [PMID: 37428196 PMCID: PMC10992090 DOI: 10.1007/s00262-023-03489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND The clinical implications of the third dose of coronavirus disease 2019 (COVID-19) vaccines in patients receiving immune checkpoint inhibitors are currently unknown. We performed a prospective analysis of the Vax-On-Third study to investigate the effects of antibody response on immune-related adverse events (irAEs) and disease outcomes. METHODS Recipients of the booster dose of SARS-CoV-2 mRNA-BNT162b2 vaccine who had received at least one course of an anti-PD-1/PD-L1 treatment before vaccination for an advanced solid malignancy were eligible. RESULTS The current analysis included 56 patients with metastatic disease (median age: 66 years; male: 71%), most of whom had a lung cancer diagnosis and were being treated with pembrolizumab- or nivolumab-based regimens. The optimal cut-point antibody titer of 486 BAU/mL allowed a dichotomization of recipients into low-responders (Low-R, < 486 BAU/mL) or high-responders (High-R, ≥ 486 BAU/mL). After a median follow-up time of 226 days, 21.4% of patients experienced moderate to severe irAEs without any recrudescence of immune toxicities preceding the booster dose. The frequencies of irAE before and after the third dose did not differ, but an increase in the cumulative incidence of immuno-related thyroiditis was observed within the High-R subgroup. On multivariate analysis, an enhanced humoral response correlated with a better outcome in terms of durable clinical benefit, which resulted in a significant reduction in the risk of disease control loss but not mortality. CONCLUSIONS Our findings would strengthen the recommendation not to change anti-PD-1/PD-L1 treatment plans based on current or future immunization schedules, implying that all these patients should be closely monitored.
Collapse
Affiliation(s)
- Fabrizio Nelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy.
| | - Diana Giannarelli
- Biostatistics Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Agnese Fabbri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Antonella Virtuoso
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Julio Rodrigo Giron Berrios
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Eleonora Marrucci
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Cristina Fiore
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Marta Schirripa
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Carlo Signorelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Mario Giovanni Chilelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Francesca Primi
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| | - Valentina Panichi
- Microbiology and Virology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Viterbo, Italy
| | - Giuseppe Topini
- Microbiology and Virology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Viterbo, Italy
| | - Maria Assunta Silvestri
- Microbiology and Virology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Viterbo, Italy
| | - Enzo Maria Ruggeri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, Strada Sammartinese snc, 01100, Viterbo, Italy
| |
Collapse
|
3
|
Nelli F, Signorelli C, Fabbri A, Giannarelli D, Virtuoso A, Giron Berrios JR, Marrucci E, Fiore C, Schirripa M, Chilelli MG, Primi F, Panichi V, Topini G, Silvestri MA, Ruggeri EM. Changes in Peripheral Immune Cells after the Third Dose of SARS-CoV-2 mRNA-BNT162b2 Vaccine and Disease Outcomes in Cancer Patients Receiving Immune Checkpoint Inhibitors: A Prospective Analysis of the Vax-on-Third-Profile Study. Cancers (Basel) 2023; 15:3625. [PMID: 37509286 PMCID: PMC10377319 DOI: 10.3390/cancers15143625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Anti-SARS-CoV-2 mRNA vaccines can deeply affect cell-mediated immune responses in immunocompromised recipients, including cancer patients receiving active treatments. The clinical implications of changes in peripheral blood lymphocyte subsets following the third dose of mRNA-BNT162b2 vaccination (tozinameran) in patients on immune checkpoint blockade are not fully understood. We conducted a prospective analysis of the Vax-On-Third-Profile study to evaluate the impact of circulating lymphocyte dynamics on disease outcomes in this subgroup of patients. METHODS Recipients of booster dosing who had received before vaccination at least one course of an anti-PD-1/PD-L1 treatment for an advanced solid tumor were eligible. Immunophenotyping of peripheral blood was performed before the third dose of tozinameran (timepoint-1) and four weeks later (timepoint-2) to quantify the absolute counts of lymphocyte subpopulations, including CD3+CD4+ T cells, CD3+CD8+ T cells, B cells, and NK cells. Logistic regression was used to analyze the relationship between lymphocyte subsets and durable clinical benefit (DCB). The log-rank test and Cox regression model were applied to evaluate the relationship between lymphocyte subpopulations and both vaccine-related time-to-treatment failure (V-TTF) and overall survival (OS). RESULTS We included a total of 56 patients with metastatic disease who were given a third dose of tozinameran between 23 September and 7 October 2021 (median age: 66 years; male: 71%). Most recipients had a diagnosis of lung cancer and were being treated with pembrolizumab or nivolumab. Compared to baseline, the third immunization resulted in an incremental change in the median counts of all lymphocyte subpopulations, which was statistically significant only for NK cells (p < 0.001). A significant correlation was found between NK cell counts and DCB at timepoint-2 (p < 0.001). Multivariate logistic regression analysis of DCB confirmed the predictive significance of high-level NK cell counts (p = 0.020). In multivariate Cox regression analysis, high-level NK cell counts independently predicted longer V-TTF [HR 0.34 (95% CI 0.14-0.80), p = 0.014] and OS [HR 0.36 (95% CI 0.15-0.89), p = 0.027]. CONCLUSIONS Our data suggest expansion of NK cell counts as the most noteworthy change in circulating lymphocytes after the third dose of tozinameran in cancer patients receiving PD-1/PD-L1-targeted agents. This change correlated with enhanced therapeutic efficacy, improving the rate of disease control, and prolonging survival outcomes. Similar findings have not been previously reported, implying that they have proof-of-concept value and warrant further confirmation.
Collapse
Affiliation(s)
- Fabrizio Nelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
- Thoracic Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Carlo Signorelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Agnese Fabbri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Diana Giannarelli
- Biostatistics Unit, Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonella Virtuoso
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
- Thoracic Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Julio Rodrigo Giron Berrios
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Eleonora Marrucci
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Cristina Fiore
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Marta Schirripa
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Mario Giovanni Chilelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Francesca Primi
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Valentina Panichi
- Cytofluorimetry Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Giuseppe Topini
- Cytofluorimetry Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Maria Assunta Silvestri
- Microbiology and Virology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Enzo Maria Ruggeri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| |
Collapse
|
4
|
Gatti-Mays ME, Tschernia NP, Strauss J, Madan RA, Karzai FH, Bilusic M, Redman J, Sater HA, Floudas CS, Toney NJ, Donahue RN, Jochems C, Marté JL, Francis D, McMahon S, Lamping E, Cordes L, Schlom J, Gulley JL. A Phase I Single-Arm Study of Biweekly NHS-IL12 in Patients With Metastatic Solid Tumors. Oncologist 2023; 28:364-e217. [PMID: 36640137 PMCID: PMC10078919 DOI: 10.1093/oncolo/oyac244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND NHS-IL12 is a first-in-class, recombinant fusion protein composed of the human monoclonal antibody NHS76 (binds exposed DNA/histones at sites of intratumoral necrosis) fused to 2 IL-12 heterodimers. The maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of NHS-IL12 monotherapy given subcutaneously (SC) every 4 weeks was previously reported. The study was expanded to include a high-exposure cohort with NHS-IL12 SC every 2 weeks (q2w). METHODS This single-arm, phase I trial evaluated NHS-IL12 12 µg/kg SC q2w or 16.8µg/kg SC q2w in patients with metastatic solid tumors. The primary endpoint was safety. RESULTS Using a 3+3 design, 13 patients with advanced cancer were enrolled and 12 were dose-limiting toxicity (DLT) evaluable. There was 1 DLT (Grade 3 aspartate transaminase/alanine transaminase [AST/ALT] elevation). Other grade 3 toxicities included: flu-like symptoms 1/13 (8%), decreased absolute lymphocyte count (ALC) 1/13 (8%), decreased white blood cell count (WBC) 1/13 (8%), but most adverse events reported were low grade and self-limiting grade. Fifty percent of evaluable patients (6/12) experienced stable disease (SD) with 42% (5/12) developing progressive disease (PD) at the first restaging. CONCLUSION Biweekly NHS-IL12 was well tolerated in this small phase I study. Additional studies incorporating NHS-IL12 with other immunomodulating agents are underway. (ClinicalTrials.gov Identifier: NCT01417546).
Collapse
Affiliation(s)
- Margaret E Gatti-Mays
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas P Tschernia
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fatima H Karzai
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marijo Bilusic
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jason Redman
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Houssein Abdul Sater
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charalampos S Floudas
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicole J Toney
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L Marté
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Deneise Francis
- Office of Research Nursing, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Sheri McMahon
- Office of Research Nursing, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Lamping
- Office of Research Nursing, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Cordes
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Paramithiotis E, Sugden S, Papp E, Bonhomme M, Chermak T, Crawford SY, Demetriades SZ, Galdos G, Lambert BL, Mattison J, McDade T, Pillet S, Murphy R. Cellular Immunity Is Critical for Assessing COVID-19 Vaccine Effectiveness in Immunocompromised Individuals. Front Immunol 2022; 13:880784. [PMID: 35693815 PMCID: PMC9179228 DOI: 10.3389/fimmu.2022.880784] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 12/28/2022] Open
Abstract
COVID-19 vaccine clinical development was conducted with unprecedented speed. Immunity measurements were concentrated on the antibody response which left significant gaps in our understanding how robust and long-lasting immune protection develops. Better understanding the cellular immune response will fill those gaps, especially in the elderly and immunocompromised populations which not only have the highest risk for severe infection, but also frequently have inadequate antibody responses. Although cellular immunity measurements are more logistically complex to conduct for clinical trials compared to antibody measurements, the feasibility and benefit of doing them in clinical trials has been demonstrated and so should be more widely adopted. Adding significant cellular response metrics will provide a deeper understanding of the overall immune response to COVID-19 vaccination, which will significantly inform vaccination strategies for the most vulnerable populations. Better monitoring of overall immunity will also substantially benefit other vaccine development efforts, and indeed any therapies that involve the immune system as part of the therapeutic strategy.
Collapse
Affiliation(s)
| | - Scott Sugden
- Scientific Team, CellCarta, Montreal, QC, Canada
| | - Eszter Papp
- Global Research and Development, CellCarta, Montreal, QC, Canada
| | - Marie Bonhomme
- Vaccine Sciences Division, Pharmaceutical Product Development (PPD) Inc., Wilmington, NC, United States
| | - Todd Chermak
- Regulatory and Government Affairs, CellCarta, Montreal, QC, Canada
| | - Stephanie Y. Crawford
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois Chicago, Chicago, IL, United States
| | | | - Gerson Galdos
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Bruce L. Lambert
- Center for Communication and Health, Northwestern University, Evanston, IL, United States
| | - John Mattison
- Health Information, Kaiser Permanente, Pasadena, CA, United States
- Health Technology Advisory Board, Arsenal Capital, New York, NY, United States
| | - Thomas McDade
- Department of Anthropology, Northwestern University, Evanston, IL, United States
| | | | - Robert Murphy
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Tsai YT, Strauss J, Toney NJ, Jochems C, Venzon DJ, Gulley JL, Schlom J, Donahue RN. Immune correlates of clinical parameters in patients with HPV-associated malignancies treated with bintrafusp alfa. J Immunother Cancer 2022; 10:jitc-2022-004601. [PMID: 35418484 PMCID: PMC9014099 DOI: 10.1136/jitc-2022-004601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose Bintrafusp alfa is a bifunctional agent consisting of an anti-human PD-L1 antibody linked to two TGFβRII. It is designed to act both as a checkpoint inhibitor and to ‘trap’ TGFβ in the tumor microenvironment. Phase I and II clinical studies demonstrated clinical activity in patients with a range of human papillomavirus (HPV)-associated cancers. The purpose of the studies reported here was the interrogation of various aspects of the peripheral immunome in patients with HPV-associated cancers, both prior to and early in the treatment regimen of bintrafusp alfa to better understand the mode of action of the agent and to help define which patients are more likely to benefit from bintrafusp alfa treatment. Patients and methods The peripheral immunome of patients (n=65) with HPV+ malignancies was analyzed both prior to treatment with bintrafusp alfa and day 14 post-treatment for levels and changes in (1) 158 different immune cell subsets, (2) multiple plasma soluble factors including analytes reflecting immune stimulatory and inhibitory status, (3) complete blood counts, and in a subset of patients (4) TCR diversity and (5) HPV-specific T-cell responses. Results Interrogation of the peripheral immunome prior to bintrafusp alfa treatment revealed several factors that associated with clinical response, including (1) higher levels of sCD27:sCD40L ratios, (2) lower levels of TGFβ1 and 12 additional factors associated with tumor mesenchymalization, and (3) higher CD8+ T cell:MDSC ratios. Analysis at 2 weeks post bintrafusp alfa revealed that eventual clinical responders had fewer increases in IL-8 levels and the neutrophil to lymphocyte ratio, and higher levels of HPV-16 specific CD8+ T cells. This study also provided information concerning differences in the peripheral immunome for patients who were naïve versus refractory to prior checkpoint inhibition therapy. While preliminary, two multivariate models developed predicted clinical benefit with 76%–91% accuracy. Conclusions These studies add insight into the mechanism of action of bintrafusp alfa and provide evidence that the interrogation of both cellular and soluble components of the peripheral immunome of patients with HPV-associated malignancies, either prior to or early in the therapeutic regimen, can provide information as to which patients are more likely to benefit with bintrafusp alfa therapy.
Collapse
Affiliation(s)
- Yo-Ting Tsai
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Nicole J Toney
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Bilusic M, Toney NJ, Donahue RN, Wroblewski S, Zibelman M, Ghatalia P, Ross EA, Karzai F, Madan RA, Dahut WL, Gulley JL, Schlom J, Plimack ER, Geynisman DM. A randomized phase 2 study of bicalutamide with or without metformin for biochemical recurrence in overweight or obese prostate cancer patients (BIMET-1). Prostate Cancer Prostatic Dis 2022; 25:735-740. [PMID: 35079115 PMCID: PMC9309187 DOI: 10.1038/s41391-022-00492-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Metformin may have anticancer effects that are independent of its hypoglycemic effects. Retrospective studies have shown that metformin use is associated with decreased incidence of prostate cancer and prostate cancer-specific mortality. Preclinical studies suggesting additive anticancer effects of combining metformin and bicalutamide prompted this clinical trial (NCT02614859). METHODS This open-label, randomized, phase 2 trial enrolled non-diabetic patients with biochemically recurrent prostate cancer, a PSADT of 3-9 months, BMI > 25 and normal testosterone. Patients were randomized 1:2 to observation for an initial 8 weeks (Arm A) or metformin 1000 mg twice daily (Arm B). Bicalutamide 50 mg/day was added after 8 weeks to both arms. The primary objective was to evaluate the number of patients with undetectable PSA ( < 0.2 ng/mL) at the end of 32 weeks. Immune correlatives were assessed as exploratory endpoints. RESULTS A total of 29 patients were enrolled from March 2015 to January 2020. No difference was seen between the 2 arms in the proportion of patients with undetectable PSA. Modest PSA decrease ranging from 4% to 24% were seen in 40.0% (95% CI: 19.1-64.0%) of patients with metformin monotherapy, compared to 11.1% (95% CI: 0.3-48.3%) in the observation arm. Metformin monotherapy reduced PD-1+ NK cells, and increased NKG2D+ NK cells. The combination of metformin and bicalutamide led to greater reductions in PD-1 expressing NK, CD4+ T, and CD8+ T-cell subsets compared to bicalutamide alone. The trial was stopped early due to predicted inability to achieve its primary endpoint. CONCLUSIONS Although metformin plus bicalutamide was well tolerated, there was no improvement in rates of achieving undetectable PSA at 32 weeks. Metformin monotherapy induced modest PSA declines in 40% of patients after 8 weeks. Metformin, given alone and in combination with bicalutamide, displayed immune modifying effects, primarily within NK and T cells subsets. TRIAL REGISTRATION Trial Registration Number: NCT02614859.
Collapse
Affiliation(s)
- Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, 33136, USA.
| | - Nicole J Toney
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan Wroblewski
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew Zibelman
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Pooja Ghatalia
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Eric A Ross
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William L Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elizabeth R Plimack
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Daniel M Geynisman
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| |
Collapse
|