1
|
Zhang WY, Zheng XL, Coghi PS, Chen JH, Dong BJ, Fan XX. Revolutionizing adjuvant development: harnessing AI for next-generation cancer vaccines. Front Immunol 2024; 15:1438030. [PMID: 39206192 PMCID: PMC11349682 DOI: 10.3389/fimmu.2024.1438030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
With the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge. Adjuvants, which enhance the immune response to antigens and improve vaccine effectiveness, have faced limitations in recent years, resulting in few novel adjuvants being identified. The advancement of artificial intelligence (AI) technology in drug development has provided a foundation for adjuvant screening and application, leading to a diversification of adjuvants. This article reviews the significant role of tumor vaccines in basic research and clinical treatment and explores the use of AI technology to screen novel adjuvants from databases. The findings of this review offer valuable insights for the development of new adjuvants for next-generation vaccines.
Collapse
Affiliation(s)
- Wan-Ying Zhang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiao-Li Zheng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Paolo Saul Coghi
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jun-Hui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bing-Jun Dong
- Gynecology Department, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Xing-Xing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
2
|
Ke Y, Xin K, Tao Y, Li L, Chen A, Shao J, Zhu J, Zhang D, Cen L, Chu Y, Yu L, Liu B, Liu Q. A Thermosensitive Bi-Adjuvant Hydrogel Triggers Epitope Spreading to Promote the Anti-Tumor Efficacy of Frameshift Neoantigens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306889. [PMID: 38308098 PMCID: PMC11005695 DOI: 10.1002/advs.202306889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
Tumor-specific frameshift mutations encoding peptides (FSPs) are highly immunogenic neoantigens for personalized cancer immunotherapy, while their clinical efficacy is limited by immunosuppressive tumor microenvironment (TME) and self-tolerance. Here, a thermosensitive hydrogel (FSP-RZ-BPH) delivering dual adjuvants R848 (TLR7/8 agonist) + Zn2+ (cGAS-STING agonist) is designed to promote the efficacy of FSPs on murine forestomach cancer (MFC). After peritumoral injection, FSP-RZ-BPH behaves as pH-responsive sustained drug release at sites near the tumor to effectively transform the immunosuppressive TME into an inflammatory type. FSP-RZ-BPH orchestrates innate and adaptive immunity to activate dendritic cells in tumor-draining lymph nodes and increase the number of FSPs-reactive effector memory T cells (TEM) in tumor by 2.9 folds. More importantly, these TEM also exhibit memory responses to nonvaccinated neoantigens on MFC. This epitope spreading effect contributes to reduce self-tolerance to maintain long-lasting anti-tumor immunity. In MFC suppressive model, FSP-RZ-BPH achieves 84.8% tumor inhibition rate and prolongs the survival of tumor-bearing mice with 57.1% complete response rate. As a preventive tumor vaccine, FSP-RZ-BPH can also significantly delay tumor growth. Overall, the work identifies frameshift MFC neoantigens for the first time and demonstrates the thermosensitive bi-adjuvant hydrogel as an effective strategy to boost bystander anti-tumor responses of frameshift neoantigens.
Collapse
Affiliation(s)
- Yaohua Ke
- The Comprehensive Cancer CentreNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjing210008China
| | - Kai Xin
- Department of OncologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjing210008China
| | - Yaping Tao
- The Comprehensive Cancer CentreNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjing210008China
| | - Lin Li
- Department of OncologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjing210008China
| | - Aoxing Chen
- Department of OncologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjing210008China
| | - Jingyi Shao
- Department of OncologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjing210008China
| | - Junmeng Zhu
- The Comprehensive Cancer CentreNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjing210008China
| | - Dinghu Zhang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhou310022China
| | - Lanqi Cen
- The Comprehensive Cancer CentreNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjing210008China
| | - Yanhong Chu
- The Comprehensive Cancer CentreNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjing210008China
| | - Lixia Yu
- The Comprehensive Cancer CentreNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjing210008China
| | - Baorui Liu
- The Comprehensive Cancer CentreNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjing210008China
- Department of OncologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjing210008China
| | - Qin Liu
- The Comprehensive Cancer CentreNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjing210008China
- Department of OncologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjing210008China
| |
Collapse
|
3
|
Krykbaeva I, Bridges K, Damsky W, Pizzurro GA, Alexander AF, McGeary MK, Park K, Muthusamy V, Eyles J, Luheshi N, Turner N, Weiss SA, Olino K, Kaech SM, Kluger HM, Miller-Jensen K, Bosenberg M. Combinatorial Immunotherapy with Agonistic CD40 Activates Dendritic Cells to Express IL12 and Overcomes PD-1 Resistance. Cancer Immunol Res 2023; 11:1332-1350. [PMID: 37478171 DOI: 10.1158/2326-6066.cir-22-0699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/17/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023]
Abstract
Checkpoint inhibitors have revolutionized cancer treatment, but resistance remains a significant clinical challenge. Myeloid cells within the tumor microenvironment can modulate checkpoint resistance by either supporting or suppressing adaptive immune responses. Using an anti-PD-1-resistant mouse melanoma model, we show that targeting the myeloid compartment via CD40 activation and CSF1R blockade in combination with anti-PD-1 results in complete tumor regression in a majority of mice. This triple therapy combination was primarily CD40 agonist-driven in the first 24 hours after therapy and showed a similar systemic cytokine profile in human patients as was seen in mice. Functional single-cell cytokine secretion profiling of dendritic cells (DC) using a novel microwell assay identified a CCL22+CCL5+ IL12-secreting DC subset as important early-stage effectors of triple therapy. CD4+ and CD8+ T cells are both critical effectors of treatment, and systems analysis of single-cell RNA sequencing data supported a role for DC-secreted IL12 in priming T-cell activation and recruitment. Finally, we showed that treatment with a novel IL12 mRNA therapeutic alone was sufficient to overcome PD-1 resistance and cause tumor regression. Overall, we conclude that combining myeloid-based innate immune activation and enhancement of adaptive immunity is a viable strategy to overcome anti-PD-1 resistance.
Collapse
Affiliation(s)
- Irina Krykbaeva
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Kate Bridges
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - William Damsky
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Gabriela A Pizzurro
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Amanda F Alexander
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Meaghan K McGeary
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Koonam Park
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Viswanathan Muthusamy
- Yale Center for Precision Cancer Modeling, Yale School of Medicine, New Haven, Connecticut
| | - James Eyles
- Oncology Research and Early Development, AstraZeneca, Cambridge, United Kingdom
| | - Nadia Luheshi
- Oncology Research and Early Development, AstraZeneca, Cambridge, United Kingdom
| | - Noel Turner
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Sarah A Weiss
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Kelly Olino
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute of Biological Sciences, La Jolla, California
| | - Harriet M Kluger
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Marcus Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
- Yale Center for Precision Cancer Modeling, Yale School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
4
|
Zhang Y, Liu C, Wu C, Song L. Natural peptides for immunological regulation in cancer therapy: Mechanism, facts and perspectives. Biomed Pharmacother 2023; 159:114257. [PMID: 36689836 DOI: 10.1016/j.biopha.2023.114257] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Cancer incidence and mortality rates are increasing annually. Treatment with surgery, chemotherapy and radiation therapy (RT) is unsatisfactory because many patients have advanced disease at the initial diagnosis. However, the emergence of immunotherapy promises to be an effective strategy to improve the outcome of advanced tumors. Immune checkpoint antibodies, which are at the forefront of immunotherapy, have had significant success but still leave some cancer patients without benefit. For more cancer patients to benefit from immunotherapy, it is necessary to find new drugs and combination therapeutic strategies to improve the outcome of advanced cancer patients and achieve long-term tumor control or even eradication. Peptides are promising choices for tumor immunotherapy drugs because they have the advantages of low production cost, high sequence selectivity, high tissue permeability, low toxicity and low immunogenicity etc., and the adjuvant matching and technologies like nanotechnology can further optimize the effects of peptides. In this review, we present the current status and mechanisms of research on peptides targeting multiple immune cells (T cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), regulatory T cells (Tregs)) and immune checkpoints in tumor immunotherapy; and we summarize the current status of research on peptide-based tumor immunotherapy in combination with other therapies including RT, chemotherapy, surgery, targeted therapy, cytokine therapy, adoptive cell therapy (ACT) and cancer vaccines. Finally, we discuss the current status of peptide applications in mRNA vaccine delivery.
Collapse
Affiliation(s)
- Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chenxin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
5
|
Biri-Kovács B, Bánóczi Z, Tummalapally A, Szabó I. Peptide Vaccines in Melanoma: Chemical Approaches towards Improved Immunotherapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15020452. [PMID: 36839774 PMCID: PMC9963291 DOI: 10.3390/pharmaceutics15020452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer of the skin is by far the most common of all cancers. Although the incidence of melanoma is relatively low among skin cancers, it can account for a high number of skin cancer deaths. Since the start of deeper insight into the mechanisms of melanoma tumorigenesis and their strong interaction with the immune system, the development of new therapeutical strategies has been continuously rising. The high number of melanoma cell mutations provides a diverse set of antigens that the immune system can recognize and use to distinguish tumor cells from normal cells. Peptide-based synthetic anti-tumor vaccines are based on tumor antigens that elicit an immune response due to antigen-presenting cells (APCs). Although targeting APCs with peptide antigens is the most important assumption for vaccine development, peptide antigens alone are poorly immunogenic. The immunogenicity of peptide antigens can be improved not only by synthetic modifications but also by the assistance of adjuvants and/or delivery systems. The current review summarizes the different chemical approaches for the development of effective peptide-based vaccines for the immunotherapeutic treatment of advanced melanoma.
Collapse
Affiliation(s)
- Beáta Biri-Kovács
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Zoltán Bánóczi
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | | | - Ildikó Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
- MTA-TTK Lendület “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-13722500
| |
Collapse
|
6
|
Neagu M, Constantin C, Jugulete G, Cauni V, Dubrac S, Szöllősi AG, Zurac S. Langerhans Cells-Revising Their Role in Skin Pathologies. J Pers Med 2022; 12:2072. [PMID: 36556292 PMCID: PMC9782496 DOI: 10.3390/jpm12122072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Langerhans cells (LCs) constitute a cellular immune network across the epidermis. Because they are located at the skin barrier, they are considered immune sentinels of the skin. These antigen-presenting cells are capable of migrating to skin draining lymph nodes to prime adaptive immune cells, namely T- and B-lymphocytes, which will ultimately lead to a broad range of immune responses. Moreover, LCs have been shown to possess important roles in the anti-cancer immune responses. Indeed, the literature nicely highlights the role of LCs in melanoma. In line with this, LCs have been found in melanoma tissues where they contribute to the local immune response. Moreover, the immunogenic properties of LCs render them attractive targets for designing vaccines to treat melanoma and autoimmune diseases. Overall, future studies will help to enlarge the portfolio of immune properties of LCs, and aid the prognosis and development of novel therapeutic approaches to treating skin pathologies, including cancers.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Gheorghita Jugulete
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinical Section IX—Pediatrics, “Prof. Dr. Matei Balş” National Institute for Infectious Diseases, 050474 Bucharest, Romania
| | - Victor Cauni
- Department of Urology, Colentina University Hospital, 050474 Bucharest, Romania
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Sabina Zurac
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Polymorphisms in toll-like receptor 3 and 4 genes as prognostic and outcome biomarkers in melanoma patients. Melanoma Res 2022; 32:309-317. [PMID: 35855659 DOI: 10.1097/cmr.0000000000000836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melanoma is one of the most aggressive tumors, and in the setting of rising incidence and mortality, there is an urgent need to identify new prognostic markers. Toll-like receptors (TLRs), are aberrantly expressed in numerous cancers, including melanoma. TLR signaling provides a microenvironment that is involved in antitumor immune response, chronic inflammation, cancer cell proliferation and evasion of immune destruction. In the present study, we investigated whether single nucleotide polymorphisms (SNPs) in TLR3 and TLR4 genes are associated with clinicopathologic features, progression and survival of melanoma patients. The study was conducted on 120 melanoma patients. DNA extracted from peripheral blood was genotyped for TLR3 polymorphisms rs5743312 and rs3775291 (L412F) and TLR4 polymorphisms rs4986790 (D299G) and rs4986791 (T399I), by TaqMan Real-Time PCR Assays. Kaplan-Meier survival curves were compared by the log-rank test. TLR3 polymorphism L412F was associated with a higher mitotic index (P = 0.035). TLR4 D299G and T399I polymorphisms were associated with indicators of melanoma severity, nodal metastases (P = 0.005 and P = 0.007, respectively) and advanced stage III (P = 0.005 and P = 0.004, respectively). Cox regression analysis showed that the presence of tumor-infiltrating lymphocytes (TILs) predicted better overall survival (HR = 0.318; P = 0.004). TLR4 T399I polymorphism was significantly associated with worse survival, P = 0.025. The overall survival rates were significantly lower for patients carrying variant allele T of TLR4 T399I SNP (TC and TT genotypes combined) (P = 0.008, log-rank test), compared to wild-type genotype CC. Our findings indicate that TLR4 polymorphisms T399I (rs4986791) and D299G (rs4986790) could be potential prognostic and survival markers for melanoma patients.
Collapse
|
8
|
Novel Pharmaceutical Strategies for Enhancing Skin Penetration of Biomacromolecules. Pharmaceuticals (Basel) 2022; 15:ph15070877. [PMID: 35890174 PMCID: PMC9317023 DOI: 10.3390/ph15070877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Skin delivery of biomacromolecules holds great advantages in the systemic and local treatment of multiple diseases. However, the densely packed stratum corneum and the tight junctions between keratinocytes stand as formidable skin barriers against the penetration of most drug molecules. The large molecular weight, high hydrophilicity, and lability nature of biomacromolecules pose further challenges to their skin penetration. Recently, novel penetration enhancers, nano vesicles, and microneedles have emerged as efficient strategies to deliver biomacromolecules deep into the skin to exert their therapeutic action. This paper reviews the potential application and mechanisms of novel skin delivery strategies with emphasis on the pharmaceutical formulations.
Collapse
|
9
|
Yang R, Yu S, Xu T, Zhang J, Wu S. Emerging role of RNA sensors in tumor microenvironment and immunotherapy. J Hematol Oncol 2022; 15:43. [PMID: 35413927 PMCID: PMC9006576 DOI: 10.1186/s13045-022-01261-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
RNA sensors detect foreign and endogenous RNAs to protect the host by initiating innate and adaptive immune response. In tumor microenvironment (TME), activation of RNA sensors induces tumor-inhibitory cytotoxic T lymphocyte responses and inhibits the activity of immunosuppressive cells though stimulating type I IFN signaling pathway. These characteristics allow RNA sensors to be prospective targets in tumor immunotherapy. Therefore, a comprehensive understanding of the roles of RNA sensors in TME could provide new insight into the antitumor immunotherapy. Moreover, RNA sensors could be prominent triggering targets to synergize with immunotherapies. In this review, we highlight the diverse mechanisms of RNA sensors in cancer immunity and their emerging contributions in cancer immunotherapy, including monotherapy with RNA sensor agonists, as well as combination with chemotherapy, radiotherapy, immune checkpoint blockade or cancer vaccine.
Collapse
Affiliation(s)
- Rui Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Improvement of Imiquimod Solubilization and Skin Retention via TPGS Micelles: Exploiting the Co-Solubilizing Effect of Oleic Acid. Pharmaceutics 2021; 13:pharmaceutics13091476. [PMID: 34575553 PMCID: PMC8469695 DOI: 10.3390/pharmaceutics13091476] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Imiquimod (IMQ) is an immunostimulant drug approved for the topical treatment of actinic keratosis, external genital-perianal warts as well as superficial basal cell carcinoma that is used off-label for the treatment of different forms of skin cancers, including some malignant melanocytic proliferations such as lentigo maligna, atypical nevi and other in situ melanoma-related diseases. Imiquimod skin delivery has proven to be a real challenge due to its very low water-solubility and reduced skin penetration capacity. The aim of the work was to improve the drug solubility and skin retention using micelles of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a water-soluble derivative of vitamin E, co-encapsulating various lipophilic compounds with the potential ability to improve imiquimod affinity for the micellar core, and thus its loading into the nanocarrier. The formulations were characterized in terms of particle size, zeta potential and stability over time and micelles performance on the skin was evaluated through the quantification of imiquimod retention in the skin layers and the visualization of a micelle-loaded fluorescent dye by two-photon microscopy. The results showed that imiquimod solubility strictly depends on the nature and concentration of the co-encapsulated compounds. The micellar formulation based on TPGS and oleic acid was identified as the most interesting in terms of both drug solubility (which was increased from few µg/mL to 1154.01 ± 112.78 µg/mL) and micellar stability (which was evaluated up to 6 months from micelles preparation). The delivery efficiency after the application of this formulation alone or incorporated in hydrogels showed to be 42- and 25-folds higher than the one of the commercial creams.
Collapse
|