1
|
Chen X, Zhong S, Zhan Y, Zhang X. CRISPR-Cas9 applications in T cells and adoptive T cell therapies. Cell Mol Biol Lett 2024; 29:52. [PMID: 38609863 PMCID: PMC11010303 DOI: 10.1186/s11658-024-00561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
T cell immunity is central to contemporary cancer and autoimmune therapies, encompassing immune checkpoint blockade and adoptive T cell therapies. Their diverse characteristics can be reprogrammed by different immune challenges dependent on antigen stimulation levels, metabolic conditions, and the degree of inflammation. T cell-based therapeutic strategies are gaining widespread adoption in oncology and treating inflammatory conditions. Emerging researches reveal that clustered regularly interspaced palindromic repeats-associated protein 9 (CRISPR-Cas9) genome editing has enabled T cells to be more adaptable to specific microenvironments, opening the door to advanced T cell therapies in preclinical and clinical trials. CRISPR-Cas9 can edit both primary T cells and engineered T cells, including CAR-T and TCR-T, in vivo and in vitro to regulate T cell differentiation and activation states. This review first provides a comprehensive summary of the role of CRISPR-Cas9 in T cells and its applications in preclinical and clinical studies for T cell-based therapies. We also explore the application of CRISPR screen high-throughput technology in editing T cells and anticipate the current limitations of CRISPR-Cas9, including off-target effects and delivery challenges, and envisioned improvements in related technologies for disease screening, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shuhan Zhong
- Department of Hematology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310003, China
| | - Yonghao Zhan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
2
|
Gandhi S, Opyrchal M, Grimm MJ, Slomba RT, Kokolus KM, Witkiewicz A, Attwood K, Groman A, Williams L, Tarquini ML, Wallace PK, Soh KT, Minderman H, Maguire O, O'Connor TL, Early AP, Levine EG, Kalinski P. Systemic infusion of TLR3-ligand and IFN-α in patients with breast cancer reprograms local tumor microenvironments for selective CTL influx. J Immunother Cancer 2023; 11:e007381. [PMID: 37963636 PMCID: PMC10649898 DOI: 10.1136/jitc-2023-007381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Presence of cytotoxic T lymphocytes (CTL) in the tumor microenvironment (TME) predicts the effectiveness of cancer immunotherapies. The ability of toll-like receptor 3 (TLR3) ligands, interferons (IFNs) and COX2 inhibitors to synergistically induce CTL-attracting chemokines (but not regulatory T cell (Treg)-attractants) in the TME, but not in healthy tissues, observed in our preclinical studies, suggested that their systemic application can reprogram local TMEs. METHODS Six evaluable patients (33-69 years) with metastatic triple-negative breast cancer received six doses of systemic chemokine-modulating (CKM) regimen composed of TLR3 ligand (rintatolimod; 200 mg; intravenous), IFN-α2b (20 MU/m2; intravenous) and COX2 inhibitor (celecoxib; 2×200 mg; oral) over 2 weeks. The predetermined primary endpoint was the intratumoral change in the expression of CTL marker, CD8α, in the post-CKM versus pre-CKM tumor biopsies. Patients received follow-up pembrolizumab (200 mg, intravenously, every 3 weeks), starting 3-8 days after completion of CKM. RESULTS Post-CKM biopsies showed selectively increased CTL markers CD8α (average 10.2-fold, median 5.5-fold, p=0.034) and granzyme B (GZMB; 6.1-fold, median 5.8-fold, p=0.02), but not FOXP3 (Treg marker) relative to HPRT1 expression, resulting in the increases in average CD8α/FOXP3 ratio and GZMB/FOXP3 ratio. CKM increased intratumoral CTL-attractants CCL5 and CXCL10, but not Treg-attractants CCL22 or CXCL12. In contrast, CD8+ T cells and their CXCR3+ subset showed transient decreases in blood. One clinical response (breast tumor autoamputation) and three stable diseases were observed. The patient with clinical response remains disease free, with a follow-up of 46 months as of data cut-off. CONCLUSIONS Short-term systemic CKM selectively increases CTL numbers and CTL/Treg ratios in the TME, while transiently decreasing CTL numbers in the blood. Transient effects of CKM suggest that its simultaneous application with checkpoint blockade and other forms of immunotherapy may be needed for optimal outcomes.
Collapse
Affiliation(s)
- Shipra Gandhi
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mateusz Opyrchal
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Melissa J Grimm
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ronald T Slomba
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kathleen M Kokolus
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Agnieszka Witkiewicz
- Advanced Tissue Imaging Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kristopher Attwood
- Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Adrienne Groman
- Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Lauren Williams
- Clinical Research Services, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mary Lynne Tarquini
- Clinical Research Services, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul K Wallace
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kah Teong Soh
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Hans Minderman
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Orla Maguire
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Tracey L O'Connor
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Amy P Early
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ellis G Levine
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Pawel Kalinski
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
3
|
Disis ML, Dang Y, Coveler AL, Childs JS, Higgins DM, Liu Y, Zhou J, Mackay S, Salazar LG. A Phase I/II Trial of HER2 Vaccine-Primed Autologous T-Cell Infusions in Patients with Treatment Refractory HER2-Overexpressing Breast Cancer. Clin Cancer Res 2023; 29:3362-3371. [PMID: 37093223 PMCID: PMC10754340 DOI: 10.1158/1078-0432.ccr-22-3578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE High levels of type I T cells are needed for tumor eradication. We evaluated whether the HER2-specific vaccine-primed T cells are readily expanded ex vivo to achieve levels needed for therapeutic infusion. PATIENTS AND METHODS Phase I/II nonrandomized trial of escalating doses of ex vivo-expanded HER2-specific T cells after in vivo priming with a multiple peptide-based HER2 intracellular domain (ICD) vaccine. Vaccines were given weekly for a total of three immunizations. Two weeks after the third vaccine, patients underwent leukapheresis for T-cell expansion, then received three escalating cell doses over 7- to 10-day intervals. Booster vaccines were administered after the T-cell infusions. The primary objective was safety. The secondary objectives included extent and persistence of HER2-specific T cells, development of epitope spreading, and clinical response. Patients received a CT scan prior to enrollment and 1 month after the last T-cell infusion. RESULTS Nineteen patients received T-cell infusions. Treatment was well tolerated. One month after the last T-cell infusion, 82% of patients had significantly augmented T cells to at least one of the immunizing epitopes and 81% of patients demonstrated enhanced intramolecular epitope spreading compared with baseline (P < 0.05). There were no complete responses, one partial response (6%), and eight patients with stable disease (47%), for a disease control rate of 53%. The median survival for those with progressive disease was 20.5 months and for responders (PR+SD) was 45.0 months. CONCLUSIONS Adoptive transfer of HER2 vaccine-primed T cells was feasible, was associated with minimal toxicity, and resulted in an increased overall survival in responding patients. See related commentary by Crosby et al., p. 3256.
Collapse
Affiliation(s)
- Mary L. Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| | - Yushe Dang
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| | - Andrew L. Coveler
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| | - Jennifer S Childs
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| | - Doreen M Higgins
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| | - Ying Liu
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| | | | | | - Lupe G. Salazar
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Buchta Rosean C, Leyder EC, Hamilton J, Carter JJ, Galloway DA, Koelle DM, Nghiem P, Heiland T. LAMP1 targeting of the large T antigen of Merkel cell polyomavirus results in potent CD4 T cell responses and tumor inhibition. Front Immunol 2023; 14:1253568. [PMID: 37711623 PMCID: PMC10499392 DOI: 10.3389/fimmu.2023.1253568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Most cases of Merkel cell carcinoma (MCC), a rare and highly aggressive type of neuroendocrine skin cancer, are associated with Merkel cell polyomavirus (MCPyV) infection. MCPyV integrates into the host genome, resulting in expression of oncoproteins including a truncated form of the viral large T antigen (LT) in infected cells. These oncoproteins are an attractive target for a therapeutic cancer vaccine. Methods We designed a cancer vaccine that promotes potent, antigen-specific CD4 T cell responses to MCPyV-LT. To activate antigen-specific CD4 T cells in vivo, we utilized our nucleic acid platform, UNITE™ (UNiversal Intracellular Targeted Expression), which fuses a tumor-associated antigen with lysosomal-associated membrane protein 1 (LAMP1). This lysosomal targeting technology results in enhanced antigen presentation and potent antigen-specific T cell responses. LTS220A, encoding a mutated form of MCPyV-LT that diminishes its pro-oncogenic properties, was introduced into the UNITE™ platform. Results Vaccination with LTS220A-UNITE™ DNA vaccine (ITI-3000) induced antigen-specific CD4 T cell responses and a strong humoral response that were sufficient to delay tumor growth of a B16F10 melanoma line expressing LTS220A. This effect was dependent on the CD4 T cells' ability to produce IFNγ. Moreover, ITI-3000 induced a favorable tumor microenvironment (TME), including Th1-type cytokines and significantly enhanced numbers of CD4 and CD8 T cells as well as NK and NKT cells. Additionally, ITI-3000 synergized with an α-PD-1 immune checkpoint inhibitor to further slow tumor growth and enhance survival. Conclusions These findings strongly suggest that in pre-clinical studies, DNA vaccination with ITI-3000, using the UNITE™ platform, enhances CD4 T cell responses to MCPyV-LT that result in significant anti-tumor immune responses. These data support the initiation of a first-in-human (FIH) Phase 1 open-label study to evaluate the safety, tolerability, and immunogenicity of ITI-3000 in patients with polyomavirus-positive MCC (NCT05422781).
Collapse
Affiliation(s)
| | | | | | - Joseph J. Carter
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Denise A. Galloway
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, United States
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Teri Heiland
- Immunomic Therapeutics Inc., Rockville, MD, United States
| |
Collapse
|
5
|
Cecil DL, Curtis B, Gad E, Gormley M, Timms AE, Corulli L, Bos R, Damle RN, Sepulveda MA, Disis ML. Anti-tumor activity of a T-helper 1 multiantigen vaccine in a murine model of prostate cancer. Sci Rep 2022; 12:13618. [PMID: 35948756 PMCID: PMC9365795 DOI: 10.1038/s41598-022-17950-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Prostate cancer is one of the few malignancies that includes vaccination as a treatment modality. Elements of an effective cancer vaccine should include the ability to elicit a Type I T-cell response and target multiple antigenic proteins expressed early in the disease. Using existing gene datasets encompassing normal prostate tissue and tumors with Gleason Score ≤ 6 and ≥ 8, 10 genes were identified that were upregulated and conserved in prostate cancer regardless of the aggressiveness of disease. These genes encoded proteins also expressed in prostatic intraepithelial neoplasia. Putative Class II epitopes derived from these proteins were predicted by a combination of algorithms and, using human peripheral blood, epitopes which selectively elicited IFN-γ or IL-10 dominant antigen specific cytokine secretion were determined. Th1 selective epitopes were identified for eight antigens. Epitopes from three antigens elicited Th1 dominant immunity in mice; PSMA, HPN, and AMACR. Each single antigen vaccine demonstrated significant anti-tumor activity inhibiting growth of implanted Myc-Cap cells after immunization as compared to control. Immunization with the combination of antigens, however, was superior to each alone in controlling tumor growth. When vaccination occurred simultaneously to tumor implant, multiantigen immunized mice had significantly smaller tumors than controls (p = 0.002) and a significantly improved overall survival (p = 0.0006). This multiantigen vaccine shows anti-tumor activity in a murine model of prostate cancer.
Collapse
Affiliation(s)
- Denise L Cecil
- Cancer Vaccine Institute, University of Washington, 850 Republican Street, Brotman Bld., 2nd Floor, Box 358050, Seattle, WA, 98195-8050, USA.
| | - Benjamin Curtis
- Cancer Vaccine Institute, University of Washington, 850 Republican Street, Brotman Bld., 2nd Floor, Box 358050, Seattle, WA, 98195-8050, USA
| | - Ekram Gad
- Cancer Vaccine Institute, University of Washington, 850 Republican Street, Brotman Bld., 2nd Floor, Box 358050, Seattle, WA, 98195-8050, USA
| | | | - Andrew E Timms
- Cancer Vaccine Institute, University of Washington, 850 Republican Street, Brotman Bld., 2nd Floor, Box 358050, Seattle, WA, 98195-8050, USA
| | - Lauren Corulli
- Cancer Vaccine Institute, University of Washington, 850 Republican Street, Brotman Bld., 2nd Floor, Box 358050, Seattle, WA, 98195-8050, USA
| | - Rinke Bos
- Janssen Vaccines and Prevention, Leiden, The Netherlands
| | | | | | - Mary L Disis
- Cancer Vaccine Institute, University of Washington, 850 Republican Street, Brotman Bld., 2nd Floor, Box 358050, Seattle, WA, 98195-8050, USA
| |
Collapse
|
6
|
Disis ML, Cecil DL. Breast cancer vaccines for treatment and prevention. Breast Cancer Res Treat 2021; 191:481-489. [PMID: 34846625 DOI: 10.1007/s10549-021-06459-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022]
Abstract
Breast cancer is immunogenic and a variety of vaccines have been designed to boost immunity directed against the disease. The components of a breast cancer vaccine, the antigen, the delivery system, and the adjuvant, can have a significant impact on vaccine immunogenicity. There have been numerous immunogenic proteins identified in all subtypes of breast cancer. The majority of these antigens are weakly immunogenic nonmutated tumor-associated proteins. Mutated proteins and neoantigen epitopes are found only in a small minority of patients and are enriched in the triple negative subtype. Several vaccines have advanced to large randomized Phase II or Phase III clinical trials. None of these trials met their primary endpoint of either progression-free or overall survival. Despite these set-backs investigators have learned important lessons regarding the clinical application of breast cancer vaccines from the type of immune response needed for tumor eradication, Type I T-cell immunity, to the patient populations most likely to benefit from vaccination. Many therapeutic breast cancer vaccines are now being tested in combination with other forms of immune therapy or chemotherapy and radiation. Breast cancer vaccines as single agents are now studied in the context of the prevention of relapse or development of disease. Newer approaches are designing vaccines to prevent breast cancer by intercepting high-risk lesions such as ductal carcinoma in situ to limit the progression of these tumors to invasive cancer. There are also several efforts to develop vaccines for the primary prevention of breast cancer by targeting antigens expressed during breast cancer initiation.
Collapse
Affiliation(s)
- Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, WA, USA.
| | - Denise L Cecil
- Cancer Vaccine Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Cecil DL, Liao JB, Dang Y, Coveler AL, Kask A, Yang Y, Childs JS, Higgins DM, Disis ML. Immunization with a Plasmid DNA Vaccine Encoding the N-Terminus of Insulin-like Growth Factor Binding Protein-2 in Advanced Ovarian Cancer Leads to High-level Type I Immune Responses. Clin Cancer Res 2021; 27:6405-6412. [PMID: 34526360 DOI: 10.1158/1078-0432.ccr-21-1579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/29/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cancer vaccines targeting nonmutated proteins elicit limited type I T-cell responses and can generate regulatory and type II T cells. Class II epitopes that selectively elicit type I or type II cytokines can be identified in nonmutated cancer-associated proteins. In mice, a T-helper I (Th1) selective insulin-like growth factor binding protein-2 (IGFBP-2) N-terminus vaccine generated high levels of IFNγ secreting T cells, no regulatory T cells, and significant antitumor activity. We conducted a phase I trial of T-helper 1 selective IGFBP-2 vaccination in patients with advanced ovarian cancer. METHODS Twenty-five patients were enrolled. The IGFBP-2 N-terminus plasmid-based vaccine was administered monthly for 3 months. Toxicity was graded by NCI criteria and antigen-specific T cells measured by IFNγ/IL10 ELISPOT. T-cell diversity and phenotype were assessed. RESULTS The vaccine was well tolerated, with 99% of adverse events graded 1 or 2, and generated high levels of IGFBP-2 IFNγ secreting T cells in 50% of patients. Both Tbet+ CD4 (P = 0.04) and CD8 (P = 0.007) T cells were significantly increased in immunized patients. There was no increase in GATA3+ CD4 or CD8, IGFBP-2 IL10 secreting T cells, or regulatory T cells. A significant increase in T-cell clonality occurred in immunized patients (P = 0.03, pre- vs. post-vaccine) and studies showed the majority of patients developed epitope spreading within IGFBP-2 and/or to other antigens. Vaccine nonresponders were more likely to have preexistent IGFBP-2 specific immunity and demonstrated defects in CD4 T cells, upregulation of PD-1, and downregulation of genes associated with T-cell activation, after immunization. CONCLUSIONS IGFBP-2 N-terminus Th1 selective vaccination safely induces type I T cells without evidence of regulatory responses.
Collapse
Affiliation(s)
- Denise L Cecil
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - John B Liao
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Yushe Dang
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Andrew L Coveler
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Angela Kask
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Yi Yang
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Jennifer S Childs
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Doreen M Higgins
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington.
| |
Collapse
|