2
|
Hou X, Kong X, Yao Y, Liu S, Ren Y, Hu M, Wang Z, Zhu H, Yang Z. Next Generation of Solid Target Radionuclide Antibody Conjugates for Tumor Immuno-Therapy. J Labelled Comp Radiopharm 2024; 67:396-409. [PMID: 39480113 DOI: 10.1002/jlcr.4124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
Immune checkpoint therapy has emerged as an effective treatment option for various types of cancers. Key immune checkpoint molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and lymphocyte activation gene 3 (LAG-3), have become pivotal targets in cancer immunotherapy. Antibodies designed to inhibit these molecules have demonstrated significant clinical efficacy. Nevertheless, the ability to monitor changes in the immune status of tumors and predict treatment response remains limited. Conventional methods, such as assessing lymphocytes in peripheral blood or conducting tumor biopsies, are inadequate for providing real-time, spatial information about T-cell distributions within heterogeneous tumors. Positron emission tomography (PET) using T-cell specific probes represents a promising and noninvasive approach to monitor both systemic and intratumoral immune changes during treatment. This technique holds substantial clinical significance and potential utility. In this paper, we review the applications of PET probes that target immune cells in molecular imaging.
Collapse
Affiliation(s)
- Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Xiangxing Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuan Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ya'nan Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Guizhou University School of Medicine, Guiyang, Guizhou, China
| | - Muye Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Gamie Z, Krippner-Heidenreich A, Gerrand C, Rankin KS. Targeting Death Receptor 5 (DR5) for the imaging and treatment of primary bone and soft tissue tumors: an update of the literature. Front Mol Biosci 2024; 11:1384795. [PMID: 39286782 PMCID: PMC11402684 DOI: 10.3389/fmolb.2024.1384795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Background Death Receptor 5 (DR5) is expressed on the surface of primary bone and soft tissue sarcoma cells, and its activation induces cell death primarily through apoptosis. The combination of DR5 agonists and commonly used chemotherapeutic agents, such as doxorubicin, can promote cell death. Currently, clinical trials are investigating the effectiveness of DR5 activation using new biological agents, such as bi-specific or tetravalent antibodies, in improving the survival of patients with relapsed or refractory cancers. Furthermore, investigations continue into the use of novel combination therapies to enhance DR5 response, for example, with inhibitor of apoptosis protein (IAP) antagonist agents [such as the second mitochondria-derived activator of caspase (SMAC) mimetics] and with immune checkpoint inhibitor anti-programmed death-ligand 1 (anti-PD-L1) or anti-programmed cell death-1 (anti-PD-1) antibodies. Other therapies include nanoparticle-mediated delivery of TRAIL plasmid DNA or TRAIL mRNA and stem cells as a vehicle for the targeted delivery of anti-cancer agents, such as TRAIL, to the tumor. Methods Scoping review of the literature from November 2017 to March 2024, utilizing PubMed and Google Scholar. Results New agents under investigation include nanoTRAIL, anti-Kv10.1, multimeric IgM, and humanized tetravalent antibodies. Developments have been made to test novel agents, and imaging has been used to detect DR5 in preclinical models and patients. The models include 3D spheroids, genetically modified mouse models, a novel jaw osteosarcoma model, and patient-derived xenograft (PDX) animal models. There are currently two ongoing clinical trials focusing on the activation of DR5, namely, IGM-8444 and INBRX-109, which have progressed to phase 2. Further modifications of TRAIL delivery with fusion to single-chain variable fragments (scFv-TRAIL), directed against tumor-associated antigens (TAAs), and in the use of stem cells focus on targeted TRAIL delivery to cancer cells using bi-functional strategies. Conclusion In vitro, in vivo, and clinical trials, as well as advances in imaging and theranostics, indicate that targeting DR5 remains a valid strategy in the treatment of some relapsed and refractory cancers.
Collapse
Affiliation(s)
- Zakareya Gamie
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Craig Gerrand
- Department of Orthopaedic Oncology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom
| | - Kenneth Samora Rankin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Zhang J, Kang F, Wang X, Chen X, Yang X, Yang Z, Wang J. Recent Advances in Radiotracers Targeting Novel Cancer-Specific Biomarkers in China: A Brief Overview. J Nucl Med 2024; 65:38S-45S. [PMID: 38719241 DOI: 10.2967/jnumed.123.266314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Indexed: 07/16/2024] Open
Abstract
Radiopharmaceuticals play a critical role in nuclear medicine, providing novel tools for specifically delivering radioisotopes for the diagnosis and treatment of cancers. As the starting point for developing radiopharmaceuticals, cancer-specific biomarkers are important and receive worldwide attention. This field in China is currently experiencing a rapid expansion, with multiple radiotracers targeting novel targets being developed and translated into clinical studies. This review provides a brief overview of the exploration of novel imaging targets, preclinical evaluation of their targeting ligands, and translational research in China from 2020 to 2023, for detecting cancer, guiding targeted therapy, and visualizing the immune microenvironment. We believe that China will play an even more important role in the development of nuclear medicine in the world in the future.
Collapse
Affiliation(s)
- Jingming Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Department of Nuclear Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fei Kang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xuejiao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China
- International Cancer Institute, Peking University Health Science Center, Beijing, China; and
| | - Zhi Yang
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China;
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jing Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China;
| |
Collapse
|
5
|
Mohr P, van Sluis J, Lub-de Hooge MN, Lammertsma AA, Brouwers AH, Tsoumpas C. Advances and challenges in immunoPET methodology. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1360710. [PMID: 39355220 PMCID: PMC11440922 DOI: 10.3389/fnume.2024.1360710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/05/2024] [Indexed: 10/03/2024]
Abstract
Immuno-positron emission tomography (immunoPET) enables imaging of specific targets that play a role in targeted therapy and immunotherapy, such as antigens on cell membranes, targets in the disease microenvironment, or immune cells. The most common immunoPET applications use a monoclonal antibody labeled with a relatively long-lived positron emitter such as 89Zr (T 1/2 = 78.4 h), but smaller antibody-based constructs labeled with various other positron emitting radionuclides are also being investigated. This molecular imaging technique can thus guide the development of new drugs and may have a pivotal role in selecting patients for a particular therapy. In early phase immunoPET trials, multiple imaging time points are used to examine the time-dependent biodistribution and to determine the optimal imaging time point, which may be several days after tracer injection due to the slow kinetics of larger molecules. Once this has been established, usually only one static scan is performed and semi-quantitative values are reported. However, total PET uptake of a tracer is the sum of specific and nonspecific uptake. In addition, uptake may be affected by other factors such as perfusion, pre-/co-administration of the unlabeled molecule, and the treatment schedule. This article reviews imaging methodologies used in immunoPET studies and is divided into two parts. The first part summarizes the vast majority of clinical immunoPET studies applying semi-quantitative methodologies. The second part focuses on a handful of studies applying pharmacokinetic models and includes preclinical and simulation studies. Finally, the potential and challenges of immunoPET quantification methodologies are discussed within the context of the recent technological advancements provided by long axial field of view PET/CT scanners.
Collapse
Affiliation(s)
- Philipp Mohr
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Wang S, Liu F, Wang P, Wen L, Wang Z, Guo Q, Zhu H, Yang Z. 124I Radiolabeled Basiliximab for CD25-Targeted Immuno-PET Imaging of Activated T Cells. Mol Pharm 2022; 19:2629-2637. [PMID: 35704773 DOI: 10.1021/acs.molpharmaceut.2c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activated T cells played critical roles in immunotherapy and adoptive T cell therapy, and a non-invasive imaging strategy can provide us useful information concerning the transportation, accumulation, and homing of T cells in vivo. In this paper, by utilizing the long half-life radionuclide iodine-124 (124I) and CD25 specific monoclonal antibody Basiliximab, we have fabricated a novel probe, namely, 124I-Basiliximab, which was highly promising in the immuno-PET imaging of T cells. In vitro, 124I-Basiliximab had superior affinity to CD25 protein (Kd = 5.31 nM) and exhibited much higher accumulation in CD25 high-expression lymphoma cell line Karpas299 than that in CD25-negative cell line Daudi. In vivo, 124I-Basiliximab was excreted slowly from the body of mice, rendering it a relatively high effective dose (0.393 mSv/MBq) when applied in the immuno-PET imaging. In Karpas299 tumor xenograft, 124I-Basiliximab probe was observed to accumulate in the tumor quickly after tracer administration, with the optimal image acquired at 24 h post-injection. More importantly, PHA-activated hPBMC had much higher uptake of 124I-Basiliximab, indicating the potential utility of 124I-Basiliximab to discriminate activated hPBMC from its non-activated status. In summary, 124I-Basiliximab was fabricated for the first time, which can be applied in CD25-targeted immuno-PET imaging of activated T cells in vivo.
Collapse
Affiliation(s)
- Shuailiang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Futao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Pei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Li Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
8
|
Bhere D, Choi SH, van de Donk P, Hope D, Gortzak K, Kunnummal A, Khalsa J, Revai Lechtich E, Reinshagen C, Leon V, Nissar N, Bi WL, Feng C, Li H, Zhang YS, Liang SH, Vasdev N, Essayed WI, Quevedo PV, Golby A, Banouni N, Palagina A, Abdi R, Fury B, Smirnakis S, Lowe A, Reeve B, Hiller A, Chiocca EA, Prestwich G, Wakimoto H, Bauer G, Shah K. Target receptor identification and subsequent treatment of resected brain tumors with encapsulated and engineered allogeneic stem cells. Nat Commun 2022; 13:2810. [PMID: 35589724 PMCID: PMC9120173 DOI: 10.1038/s41467-022-30558-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Cellular therapies offer a promising therapeutic strategy for the highly malignant brain tumor, glioblastoma (GBM). However, their clinical translation is limited by the lack of effective target identification and stringent testing in pre-clinical models that replicate standard treatment in GBM patients. In this study, we show the detection of cell surface death receptor (DR) target on CD146-enriched circulating tumor cells (CTC) captured from the blood of mice bearing GBM and patients diagnosed with GBM. Next, we developed allogeneic "off-the-shelf" clinical-grade bifunctional mesenchymal stem cells (MSCBif) expressing DR-targeted ligand and a safety kill switch. We show that biodegradable hydrogel encapsulated MSCBif (EnMSCBif) has a profound therapeutic efficacy in mice bearing patient-derived invasive, primary and recurrent GBM tumors following surgical resection. Activation of the kill switch enhances the efficacy of MSCBif and results in their elimination post-tumor treatment which can be tracked by positron emission tomography (PET) imaging. This study establishes a foundation towards a clinical trial of EnMSCBif in primary and recurrent GBM patients.
Collapse
Affiliation(s)
- Deepak Bhere
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29201, USA
| | - Sung Hugh Choi
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pim van de Donk
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - David Hope
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kiki Gortzak
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Amina Kunnummal
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jasneet Khalsa
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Esther Revai Lechtich
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Clemens Reinshagen
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Victoria Leon
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nabil Nissar
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cheng Feng
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hongbin Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yu Shrike Zhang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven H Liang
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Neil Vasdev
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Walid Ibn Essayed
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pablo Valdes Quevedo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Naima Banouni
- Department of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anna Palagina
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Reza Abdi
- Department of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Brian Fury
- UC Davis Institute for Regenerative Cures, Davis, CA, 95817, USA
| | - Stelios Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Alarice Lowe
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Arthur Hiller
- Amasa Therapeutics Inc., 1 Harmony Lane, Andover, MA, 01810, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Glenn Prestwich
- Department of Medicinal Chemistry, College of Pharmacy University of Utah, Salt Lake City, UT, 84112, USA
- Washington State University Health Sciences, Spokane, WA, 99202, USA
| | - Hiroaki Wakimoto
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Gerhard Bauer
- UC Davis Institute for Regenerative Cures, Davis, CA, 95817, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|