1
|
Rodriguez LIL, Amadio R, Piperno GM, Benvenuti F. Tissue-specific properties of type 1 dendritic cells in lung cancer: implications for immunotherapy. J Immunother Cancer 2025; 13:e010547. [PMID: 40132908 PMCID: PMC11938230 DOI: 10.1136/jitc-2024-010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
Checkpoint inhibitors have led to remarkable benefits in non-small cell lung cancer (NSCLC), yet response rates remain below expectations. High-dimensional analysis and mechanistic experiments in clinical samples and relevant NSCLC models uncovered the immune composition of lung cancer tissues, providing invaluable insights into the functional properties of tumor-infiltrating T cells and myeloid cells. Among myeloid cells, type 1 conventional dendritic cells (cDC1s) stand out for their unique ability to induce effector CD8 T cells against neoantigens and coordinate antitumoral immunity. Notably, lung resident cDC1 are particularly abundant and long-lived and express a unique tissue-specific gene program, underscoring their central role in lung immunity. Here, we discuss recent insights on the induction and regulation of antitumoral T cell responses in lung cancer, separating it from the tissue-agnostic knowledge generated from heterogeneous tumor models. We focus on the most recent studies dissecting functional states and spatial distribution of lung cDC1 across tumor stages and their impact on T cell responses to neoantigens. Finally, we highlight relevant gaps and emerging strategies to harness lung cDC1 immunostimulatory potential.
Collapse
Affiliation(s)
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Life Sciences (DSV), University of Trieste, Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
2
|
Roerden M, Castro AB, Cui Y, Harake N, Kim B, Dye J, Maiorino L, White FM, Irvine DJ, Litchfield K, Spranger S. Neoantigen architectures define immunogenicity and drive immune evasion of tumors with heterogenous neoantigen expression. J Immunother Cancer 2024; 12:e010249. [PMID: 39521615 PMCID: PMC11552027 DOI: 10.1136/jitc-2024-010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Intratumoral heterogeneity (ITH) and subclonal antigen expression blunt antitumor immunity and are associated with poor responses to immune-checkpoint blockade immunotherapy (ICB) in patients with cancer. The underlying mechanisms however thus far remained elusive, preventing the design of novel treatment approaches for patients with high ITH tumors. METHODS We developed a mouse model of lung adenocarcinoma with defined expression of different neoantigens (NeoAg), enabling us to analyze how these impact antitumor T-cell immunity and to study underlying mechanisms. Data from a large cancer patient cohort was used to study whether NeoAg architecture characteristics found to define tumor immunogenicity in our mouse models are linked to ICB responses in patients with cancer. RESULTS We demonstrate that concurrent expression and clonality define NeoAg architectures which determine the immunogenicity of individual NeoAg and drive immune evasion of tumors with heterogenous NeoAg expression. Mechanistically, we identified concerted interplays between concurrent T-cell responses induced by cross-presenting dendritic cells (cDC1) mirroring the tumor NeoAg architecture during T-cell priming in the lymph node. Depending on the characteristics and clonality of respective NeoAg, this interplay mutually benefited concurrent T-cell responses or led to competition between T-cell responses to different NeoAg. In tumors with heterogenous NeoAg expression, NeoAg architecture-induced suppression of T-cell responses against branches of the tumor drove immune evasion and caused resistance to ICB. Therapeutic RNA-based vaccination targeting immune-suppressed T-cell responses synergized with ICB to enable control of tumors with subclonal NeoAg expression. A pan-cancer clinical data analysis indicated that competition and synergy between T-cell responses define responsiveness to ICB in patients with cancer. CONCLUSIONS NeoAg architectures modulate the immunogenicity of NeoAg and tumors by dictating the interplay between concurrent T-cell responses mediated by cDC1. Impaired induction of T-cell responses supports immune evasion in tumors with heterogenous NeoAg expression but is amenable to NeoAg architecture-informed vaccination, which in combination with ICB portrays a promising treatment approach for patients with tumors exhibiting high ITH.
Collapse
Affiliation(s)
- Malte Roerden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Andrea B Castro
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Yufei Cui
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Noora Harake
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Byungji Kim
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Jonathan Dye
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
- Ragon Institute at MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
- Ragon Institute at MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Juanes-Velasco P, Arias-Hidalgo C, García-Vaquero ML, Sotolongo-Ravelo J, Paíno T, Lécrevisse Q, Landeira-Viñuela A, Góngora R, Hernández ÁP, Fuentes M. Crucial Parameters for Immunopeptidome Characterization: A Systematic Evaluation. Int J Mol Sci 2024; 25:9564. [PMID: 39273511 PMCID: PMC11395153 DOI: 10.3390/ijms25179564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Immunopeptidomics is the area of knowledge focused on the study of peptides assembled in the major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, which could activate the immune response via specific and selective T cell recognition. Advances in high-sensitivity mass spectrometry have enabled the detailed identification and quantification of the immunopeptidome, significantly impacting fields like oncology, infections, and autoimmune diseases. Current immunopeptidomics approaches primarily focus on workflows to identify immunopeptides from HLA molecules, requiring the isolation of the HLA from relevant cells or tissues. Common critical steps in these workflows, such as cell lysis, HLA immunoenrichment, and peptide isolation, significantly influence outcomes. A systematic evaluation of these steps led to the creation of an 'Immunopeptidome Score' to enhance the reproducibility and robustness of these workflows. This score, derived from LC-MS/MS datasets (ProteomeXchange identifier PXD038165), in combination with available information from public databases, aids in optimizing the immunopeptidome characterization process. The 'Immunopeptidome Score' has been applied in a systematic analysis of protein extraction, HLA immunoprecipitation, and peptide recovery yields across several tumor cell lines enabling the selection of peptides with optimal features and, therefore, the identification of potential biomarker and therapeutic targets.
Collapse
Affiliation(s)
- Pablo Juanes-Velasco
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlota Arias-Hidalgo
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marina L García-Vaquero
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Janet Sotolongo-Ravelo
- Oncohematology Group, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Teresa Paíno
- Oncohematology Group, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Quentin Lécrevisse
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alicia Landeira-Viñuela
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Góngora
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángela-Patricia Hernández
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pharmaceutical Sciences, Organic Chemistry, Faculty of Pharmacy, University of Salamanca, CIETUS, IBSAL, 37007 Salamanca, Spain
| | - Manuel Fuentes
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Proteomics Unit-IBSAL, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, (IBSAL/USAL), 37007 Salamanca, Spain
| |
Collapse
|
4
|
López L, Morosi LG, La Terza F, Bourdely P, Rospo G, Amadio R, Piperno GM, Russo V, Volponi C, Vodret S, Joshi S, Giannese F, Lazarevic D, Germano G, Stoitzner P, Bardelli A, Dalod M, Pace L, Caronni N, Guermonprez P, Benvenuti F. Dendritic cell-targeted therapy expands CD8 T cell responses to bona-fide neoantigens in lung tumors. Nat Commun 2024; 15:2280. [PMID: 38480738 PMCID: PMC10937682 DOI: 10.1038/s41467-024-46685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Cross-presentation by type 1 DCs (cDC1) is critical to induce and sustain antitumoral CD8 T cell responses to model antigens, in various tumor settings. However, the impact of cross-presenting cDC1 and the potential of DC-based therapies in tumors carrying varied levels of bona-fide neoantigens (neoAgs) remain unclear. Here we develop a hypermutated model of non-small cell lung cancer in female mice, encoding genuine MHC-I neoepitopes to study neoAgs-specific CD8 T cell responses in spontaneous settings and upon Flt3L + αCD40 (DC-therapy). We find that cDC1 are required to generate broad CD8 responses against a range of diverse neoAgs. DC-therapy promotes immunogenicity of weaker neoAgs and strongly inhibits the growth of high tumor-mutational burden (TMB) tumors. In contrast, low TMB tumors respond poorly to DC-therapy, generating mild CD8 T cell responses that are not sufficient to block progression. scRNA transcriptional analysis, immune profiling and functional assays unveil the changes induced by DC-therapy in lung tissues, which comprise accumulation of cDC1 with increased immunostimulatory properties and less exhausted effector CD8 T cells. We conclude that boosting cDC1 activity is critical to broaden the diversity of anti-tumoral CD8 T cell responses and to leverage neoAgs content for therapeutic advantage.
Collapse
Affiliation(s)
- Lucía López
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Luciano Gastón Morosi
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pierre Bourdely
- Université Paris Cité, Institut Cochin, INSERM 1016, Paris, France
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, KU Leuven, Leuven, Belgium
| | - Giuseppe Rospo
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Turin, Italy
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Valentina Russo
- G. Armenise-Harvard Immune Regulation Unit, IIGM, Candiolo, TO, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Camilla Volponi
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
- Cellular and Molecular Oncoimmunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Simone Vodret
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Sonal Joshi
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Francesca Giannese
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Germano
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Turin, Italy
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Turin, Italy
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Luigia Pace
- G. Armenise-Harvard Immune Regulation Unit, IIGM, Candiolo, TO, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy.
| |
Collapse
|
5
|
Shbeer AM. Current state of knowledge and challenges for harnessing the power of dendritic cells in cancer immunotherapy. Pathol Res Pract 2024; 253:155025. [PMID: 38147726 DOI: 10.1016/j.prp.2023.155025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
DCs have great promise for cancer immunotherapy and are essential for coordinating immune responses. In the battle against cancer, using DCs' ability to stimulate the immune system and focus it on tumor cells has shown to be a viable tactic. This study offers a thorough summary of recent developments as well as potential future paths for DC-based immunotherapy against cancer. This study reviews the many methods used in DC therapy, such as vaccination and active cellular immunotherapy. The effectiveness and safety of DC-based treatments for metastatic castration-resistant prostate cancer and non-small cell lung cancer are highlighted in these investigations. The findings indicate longer survival times and superior results for particular patient groups. We are aware of the difficulties and restrictions of DC-based immunotherapy, though. These include the immunosuppressive tumor microenvironment, the intricacy of DC production, and the heterogeneity within DC populations. More study and development are needed to overcome these challenges to enhance immunological responses, optimize treatment regimens, and increase scalability.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
6
|
MHC-dressing on dendritic cells: Boosting anti-tumor immunity via unconventional tumor antigen presentation. Semin Immunol 2023; 66:101710. [PMID: 36640616 DOI: 10.1016/j.smim.2023.101710] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Dendritic cells are crucial for anti-tumor immune responses due to their ability to activate cytotoxic effector CD8+ T cells. Canonically, in anti-tumor immunity, dendritic cells activate CD8+ T cells in a process termed cross-presentation. Recent studies have demonstrated that another type of antigen presentation, MHC-dressing, also serves to activate CD8+ T cells against tumor cell-derived antigens. Understanding MHC-dressing's specific contributions to anti-tumor immunity can open up novel therapeutic avenues. In this review, we summarize the early studies that identified MHC-dressing as a relevant antigen presentation pathway before diving into a deeper discussion of the biology of MHC-dressing, focusing in particular on which dendritic cell subsets are most capable of performing MHC-dressing and how MHC-dressing compares to other forms of antigen presentation. We conclude by discussing the implications MHC-dressing has for anti-tumor immunity.
Collapse
|
7
|
Zagorulya M, Spranger S. Once upon a prime: DCs shape cancer immunity. Trends Cancer 2023; 9:172-184. [PMID: 36357313 PMCID: PMC10827483 DOI: 10.1016/j.trecan.2022.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Cytotoxic CD8+ T cells are potent killers of diseased cells, but their functional capacity is often compromised in cancer. The quality of antitumor T cell immunity is determined during T cell priming in the lymph node and further influenced by the local microenvironment of the tumor. Increasing evidence indicates that dendritic cells (DCs) have the capacity to precisely regulate the functional quality of antitumor T cell responses in both locations. In this review, we discuss recent advances in our understanding of how distinct DC-derived signals influence CD8+ T cell differentiation and antitumor functions. Insight into the mechanisms of DC-mediated regulation of antitumor immunity could inspire the development of improved approaches to prevent and reverse T cell dysfunction in cancer.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Stefani Spranger
- Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Ludwig Center at MIT's Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|