1
|
Yang M, Hou S, Chen Y, Chen H, Chu M, Liu SB. Emerging insights into intravital imaging, unraveling its role in cancer immunotherapy. Cancer Immunol Immunother 2025; 74:100. [PMID: 39904769 PMCID: PMC11794739 DOI: 10.1007/s00262-025-03944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Cancer immunotherapy has attracted great attention as a potential therapeutic approach for advanced malignancies due to its promising survival benefits. Comprehension of intricate interactions between the tumor microenvironment (TME) and immune checkpoint inhibitors (ICIs) is crucial for optimizing and improving immunotherapies. Currently, several experimental strategies are available to monitor this complexity but most of them fail to facilitate real-time monitoring of the immune response such as cellular phagocytosis and cytolysis. Consequently, the application of intravital imaging has been extensively studied in the domain of cancer immunotherapy. Intravital imaging has been proven to be a powerful real-time imaging modality that provides insights into intratumoral immune responses, cellular metabolic signatures, tumor vasculature, and cellular functions. This review aims to provide a comprehensive overview of the latest research on intravital imaging in cancer immunotherapy, especially addressing how intravital imaging sheds light on essential features of tumor immunity, immune infiltrations, tumor angiogenesis, and aids in the clarification of underlying immunotherapeutic mechanisms. Moreover, a variety of labeling tools, imaging windows and models for real-time visualizations of TME are also summarized. We will also investigate the full potential of using intravital imaging to circumvent the limitations of currently available imaging modalities, which hold promise to advent efficient immunotherapy for cancer patients.
Collapse
Affiliation(s)
- Minfeng Yang
- School of Public Health, Nantong University, Nantong, China
| | - Shiqiang Hou
- The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, China
| | - Yao Chen
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, China
| | - Hongzhao Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, People's Republic of China
| | - Minjie Chu
- School of Public Health, Nantong University, Nantong, China.
| | - Song-Bai Liu
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, China.
| |
Collapse
|
2
|
Kollmar J, Xu J, Gonzalves D, Baur JA, Li LZ, Tchou J, Xu HN. Differential Mitochondrial Redox Responses to the Inhibition of NAD + Salvage Pathway of Triple Negative Breast Cancer Cells. Cancers (Basel) 2024; 17:7. [PMID: 39796638 PMCID: PMC11718843 DOI: 10.3390/cancers17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD+. Over expression of Nampt, the rate-limiting enzyme of the NAD+ biosynthesis salvage pathway, is common in breast cancer cells, and more so in triple negative breast cancer (TNBC) cells. Targeting the salvage pathway has been pursued for cancer therapy. However, TNBC cells have heterogeneous responses to Nampt inhibition, which contributes to the diverse outcomes. There is a lack of imaging biomarkers to differentiate among TNBC cells under metabolic stress and identify which are responsive. We aimed to characterize and differentiate among a panel of TNBC cell lines under NAD-deficient stress and identify which subtypes are more dependent on the NAD salvage pathway. Methods: Optical redox imaging (ORI), a label-free live cell imaging microscopy technique was utilized to acquire intrinsic fluorescence intensities of NADH and FAD-containing flavoproteins (Fp) thus the mitochondrial redox ratio Fp/(NADH + Fp) in a panel of TNBC cell lines. Various fluorescence probes were then added to the cultures to image the mitochondrial ROS, mitochondrial membrane potential, mitochondrial mass, and cell number. Results: Various TNBC subtypes are sensitive to Nampt inhibition in a dose- and time-dependent manner, they have differential mitochondrial redox responses; furthermore, the mitochondrial redox indices linearly correlated with mitochondrial ROS induced by various doses of a Nampt inhibitor. Moreover, the changes in the redox indices correlated with growth inhibition. Additionally, the redox state was found fully recovered after removing the Nampt inhibitor. Conclusions: This study supports the utility of ORI in rapid metabolic phenotyping of TNBC cells under NAD-deficient stress to identify responsive cells and biomarkers of treatment response, facilitating combination therapy strategies.
Collapse
Affiliation(s)
- Jack Kollmar
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - Junmei Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| | - Diego Gonzalves
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| | - Julia Tchou
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| |
Collapse
|
3
|
Deng D, Hao T, Lu L, Yang M, Zeng Z, Lovell JF, Liu Y, Jin H. Applications of Intravital Imaging in Cancer Immunotherapy. Bioengineering (Basel) 2024; 11:264. [PMID: 38534538 DOI: 10.3390/bioengineering11030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Currently, immunotherapy is one of the most effective treatment strategies for cancer. However, the efficacy of any specific anti-tumor immunotherapy can vary based on the dynamic characteristics of immune cells, such as their rate of migration and cell-to-cell interactions. Therefore, understanding the dynamics among cells involved in the immune response can inform the optimization and improvement of existing immunotherapy strategies. In vivo imaging technologies use optical microscopy techniques to visualize the movement and behavior of cells in vivo, including cells involved in the immune response, thereby showing great potential for application in the field of cancer immunotherapy. In this review, we briefly introduce the technical aspects required for in vivo imaging, such as fluorescent protein labeling, the construction of transgenic mice, and various window chamber models. Then, we discuss the elucidation of new phenomena and mechanisms relating to tumor immunotherapy that has been made possible by the application of in vivo imaging technology. Specifically, in vivo imaging has supported the characterization of the movement of T cells during immune checkpoint inhibitor therapy and the kinetic analysis of dendritic cell migration in tumor vaccine therapy. Finally, we provide a perspective on the challenges and future research directions for the use of in vivo imaging technology in cancer immunotherapy.
Collapse
Affiliation(s)
- Deqiang Deng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianli Hao
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lisen Lu
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muyang Yang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Zeng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Yushuai Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Rodrigues J, Amin A, Chandra S, Mulla NJ, Nayak GS, Rai S, Ray S, Mahato KK. Machine Learning Enabled Photoacoustic Spectroscopy for Noninvasive Assessment of Breast Tumor Progression In Vivo: A Preclinical Study. ACS Sens 2024; 9:589-601. [PMID: 38288735 PMCID: PMC10897932 DOI: 10.1021/acssensors.3c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/25/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Breast cancer is a dreaded disease affecting women the most in cancer-related deaths over other cancers. However, early diagnosis of the disease can help increase survival rates. The existing breast cancer diagnosis tools do not support the early diagnosis of the disease. Therefore, there is a great need to develop early diagnostic tools for this cancer. Photoacoustic spectroscopy (PAS), being very sensitive to biochemical changes, can be relied upon for its application in detecting breast tumors in vivo. With this motivation, in the current study, an aseptic chamber integrated photoacoustic (PA) probe was designed and developed to monitor breast tumor progression in vivo, established in nude mice. The device served the dual purpose of transporting tumor-bearing animals to the laboratory from the animal house and performing PA experiments in the same chamber, maintaining sterility. In the current study, breast tumor was induced in the nude mice by MCF-7 cells injection and the corresponding PA spectra at different time points (day 0, 5, 10, 15, and 20) of tumor progression in vivo in the same animals. The recorded photoacoustic spectra were subsequently preprocessed, wavelet-transformed, and subjected to filter-based feature selection algorithm. The selected top 20 features, by minimum redundancy maximum relevance (mRMR) algorithm, were then used to build an input feature matrix for machine learning (ML)-based classification of the data. The performance of classification models demonstrated 100% specificity, whereas the sensitivity of 95, 100, 92.5, and 85% for the time points, day 5, 10, 15, and 20, respectively. These results suggest the potential of PA signal-based classification of breast tumor progression in a preclinical model. The PA signal contains information on the biochemical changes associated with disease progression, emphasizing its translational strength toward early disease diagnosis.
Collapse
Affiliation(s)
- Jackson Rodrigues
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Ashwini Amin
- Department
of Computer Science and Engineering, Manipal
Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Subhash Chandra
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Nitufa J. Mulla
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - G. Subramanya Nayak
- Department
of Electronics and Communication, Manipal
Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sharada Rai
- Department
of Pathology, Kasturba Medical College Mangalore,
Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Satadru Ray
- Department
of Surgery, Kasturba Medical College, Manipal
Academy of Higher Education, Karnataka,Manipal 576104, India
| | - Krishna Kishore Mahato
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| |
Collapse
|
5
|
CHEN QIUQIANG, GUO XUEJUN, MA WENXUE. Opportunities and challenges of CD47-targeted therapy in cancer immunotherapy. Oncol Res 2023; 32:49-60. [PMID: 38188674 PMCID: PMC10767231 DOI: 10.32604/or.2023.042383] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/09/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of cancer, with the tumor microenvironment (TME) playing a pivotal role in modulating the immune response. CD47, a cell surface protein, has been identified as a crucial regulator of the TME and a potential therapeutic target for cancer therapy. However, the precise functions and implications of CD47 in the TME during immunotherapy for cancer patients remain incompletely understood. This comprehensive review aims to provide an overview of CD47's multifaced role in TME regulation and immune evasion, elucidating its impact on various types of immunotherapy outcomes, including checkpoint inhibitors and CAR T-cell therapy. Notably, CD47-targeted therapies offer a promising avenue for improving cancer treatment outcomes, especially when combined with other immunotherapeutic approaches. The review also discusses current and potential CD47-targeted therapies being explored for cancer treatment and delves into the associated challenges and opportunities inherent in targeting CD47. Despite the demonstrated effectiveness of CD47-targeted therapies, there are potential problems, including unintended effects on healthy cells, hematological toxicities, and the development if resistance. Consequently, further research efforts are warranted to fully understand the underlying mechanisms of resistance and to optimize CD47-targeted therapies through innovative combination approaches, ultimately improving cancer treatment outcomes. Overall, this comprehensive review highlights the significance of CD47 as a promising target for cancer immunotherapy and provides valuable insight into the challenges and opportunities in developing effective CD47-targeted therapies for cancer treatment.
Collapse
Affiliation(s)
- QIUQIANG CHEN
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University School of Medicine, Huzhou, 313000, China
| | - XUEJUN GUO
- Department of Hematology, Puyang Youtian General Hospital, Puyang, 457001, China
| | - WENXUE MA
- Department of Medicine, Moores Cancer Center, Sanford Stem Cell Institute, University of California San Diego, La Jolla, San Diego, 92093, USA
| |
Collapse
|
6
|
Gooz M, Maldonado EN. Fluorescence microscopy imaging of mitochondrial metabolism in cancer cells. Front Oncol 2023; 13:1152553. [PMID: 37427141 PMCID: PMC10326048 DOI: 10.3389/fonc.2023.1152553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Mitochondrial metabolism is an important contributor to cancer cell survival and proliferation that coexists with enhanced glycolytic activity. Measuring mitochondrial activity is useful to characterize cancer metabolism patterns, to identify metabolic vulnerabilities and to identify new drug targets. Optical imaging, especially fluorescent microscopy, is one of the most valuable tools for studying mitochondrial bioenergetics because it provides semiquantitative and quantitative readouts as well as spatiotemporal resolution of mitochondrial metabolism. This review aims to acquaint the reader with microscopy imaging techniques currently used to determine mitochondrial membrane potential (ΔΨm), nicotinamide adenine dinucleotide (NADH), ATP and reactive oxygen species (ROS) that are major readouts of mitochondrial metabolism. We describe features, advantages, and limitations of the most used fluorescence imaging modalities: widefield, confocal and multiphoton microscopy, and fluorescent lifetime imaging (FLIM). We also discus relevant aspects of image processing. We briefly describe the role and production of NADH, NADHP, flavins and various ROS including superoxide and hydrogen peroxide and discuss how these parameters can be analyzed by fluorescent microscopy. We also explain the importance, value, and limitations of label-free autofluorescence imaging of NAD(P)H and FAD. Practical hints for the use of fluorescent probes and newly developed sensors for imaging ΔΨm, ATP and ROS are described. Overall, we provide updated information about the use of microscopy to study cancer metabolism that will be of interest to all investigators regardless of their level of expertise in the field.
Collapse
Affiliation(s)
- Monika Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Eduardo N. Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Imaging glucose metabolism to reveal tumor progression. Front Physiol 2023; 14:1103354. [PMID: 36818450 PMCID: PMC9932271 DOI: 10.3389/fphys.2023.1103354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose: To analyze and review the progress of glucose metabolism-based molecular imaging in detecting tumors to guide clinicians for new management strategies. Summary: When metabolic abnormalities occur, termed the Warburg effect, it simultaneously enables excessive cell proliferation and inhibits cell apoptosis. Molecular imaging technology combines molecular biology and cell probe technology to visualize, characterize, and quantify processes at cellular and subcellular levels in vivo. Modern instruments, including molecular biochemistry, data processing, nanotechnology, and image processing, use molecular probes to perform real-time, non-invasive imaging of molecular and cellular events in living organisms. Conclusion: Molecular imaging is a non-invasive method for live detection, dynamic observation, and quantitative assessment of tumor glucose metabolism. It enables in-depth examination of the connection between the tumor microenvironment and tumor growth, providing a reliable assessment technique for scientific and clinical research. This new technique will facilitate the translation of fundamental research into clinical practice.
Collapse
Affiliation(s)
- Yiming Meng
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jing Sun
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Guirong Zhang
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Tao Yu
- Department of Medical Image, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China,*Correspondence: Tao Yu, ; Haozhe Piao,
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China,*Correspondence: Tao Yu, ; Haozhe Piao,
| |
Collapse
|
8
|
Granata V, Fusco R, Setola SV, Simonetti I, Picone C, Simeone E, Festino L, Vanella V, Vitale MG, Montanino A, Morabito A, Izzo F, Ascierto PA, Petrillo A. Immunotherapy Assessment: A New Paradigm for Radiologists. Diagnostics (Basel) 2023; 13:diagnostics13020302. [PMID: 36673112 PMCID: PMC9857844 DOI: 10.3390/diagnostics13020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/14/2023] Open
Abstract
Immunotherapy denotes an exemplar change in an oncological setting. Despite the effective application of these treatments across a broad range of tumors, only a minority of patients have beneficial effects. The efficacy of immunotherapy is affected by several factors, including human immunity, which is strongly correlated to genetic features, such as intra-tumor heterogeneity. Classic imaging assessment, based on computed tomography (CT) or magnetic resonance imaging (MRI), which is useful for conventional treatments, has a limited role in immunotherapy. The reason is due to different patterns of response and/or progression during this kind of treatment which differs from those seen during other treatments, such as the possibility to assess the wide spectrum of immunotherapy-correlated toxic effects (ir-AEs) as soon as possible. In addition, considering the unusual response patterns, the limits of conventional response criteria and the necessity of using related immune-response criteria are clear. Radiomics analysis is a recent field of great interest in a radiological setting and recently it has grown the idea that we could identify patients who will be fit for this treatment or who will develop ir-AEs.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
- Correspondence:
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Carmine Picone
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Ester Simeone
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Lucia Festino
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Vito Vanella
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Maria Grazia Vitale
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Agnese Montanino
- Thoracic Medical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Paolo Antonio Ascierto
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|