1
|
Li T, Chu J, Zhou G, Jiang G. miR-603 Mediates Thyroid Cancer Progression by Inhibiting HACE1-Dependent YAP1 Degradation. Arch Biochem Biophys 2025:110453. [PMID: 40334961 DOI: 10.1016/j.abb.2025.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
This study delineates the regulatory role of MicroRNA-603 (miR-603) on the molecular dynamics of HACE1 and YAP1 in thyroid cancer (TC). Using a combination of bioinformatics, dual-luciferase reporter assays, and various cellular assays, we identified that miR-603 is significantly overexpressed in TC tissues and cells. Our investigations confirmed that miR-603 targets the 3'UTR of HACE1, suppressing its expression, which in turn affects the ubiquitination and stability of the YAP1 protein. Specifically, HACE1's suppression led to decreased YAP1 degradation, promoting cellular processes associated with tumor progression, such as proliferation, migration, and invasion. These in vitro findings were corroborated by in vivo experiments in a TC xenograft model, demonstrating that miR-603 facilitates tumor growth through stabilization of YAP1 protein by targeting HACE1. These results highlight a novel miRNA-mediated pathway influencing TC pathogenesis and suggest potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Tangya Li
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, Jiangsu, China
| | - Jian Chu
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, Jiangsu, China
| | - Guangjun Zhou
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, Jiangsu, China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China.
| |
Collapse
|
2
|
Huang Y, Gao Y, Lin Z, Miao H. Involvement of the ubiquitin-proteasome system in the regulation of the tumor microenvironment and progression. Genes Dis 2025; 12:101240. [PMID: 39759114 PMCID: PMC11697063 DOI: 10.1016/j.gendis.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2025] Open
Abstract
The tumor microenvironment is a complex environment comprising tumor cells, non-tumor cells, and other critical non-cellular components. Some studies about tumor microenvironment have recently achieved remarkable progress in tumor treatment. As a substantial part of post-translational protein modification, ubiquitination is a crucial player in maintaining protein stability in cell signaling, cell growth, and a series of cellular life activities, which are also essential for regulating tumor cells or other non-tumor cells in the tumor microenvironment. This review focuses on the role and function of ubiquitination and deubiquitination modification in the tumor microenvironment while discussing the prospect of developing inhibitors targeting ubiquity-related enzymes, thereby providing ideas for future research in cancer therapy.
Collapse
Affiliation(s)
- Yulan Huang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuan Gao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
3
|
Zhang Y, Yao R, Li M, Fang C, Feng K, Chen X, Wang J, Luo R, Shi H, Chen X, Zhao X, Huang H, Liu S, Yin B, Zhong C. CircTTC13 promotes sorafenib resistance in hepatocellular carcinoma through the inhibition of ferroptosis by targeting the miR-513a-5p/SLC7A11 axis. Mol Cancer 2025; 24:32. [PMID: 39871338 PMCID: PMC11771119 DOI: 10.1186/s12943-024-02224-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/31/2024] [Indexed: 01/29/2025] Open
Abstract
The high mortality rate from hepatocellular carcinoma (HCC) is due primarily to challenges in early diagnosis and the development of drug resistance in advanced stages. Many first-line chemotherapeutic drugs induce ferroptosis, a form of programmed cell death dependent on ferrous iron-mediated oxidative stress, suggesting that drug resistance and ensuing tumor progression may in part stem from reduced ferroptosis. Since circular RNAs (circRNAs) have been shown to influence tumor development, we examined whether specific circRNAs may regulate drug-induced ferroptosis in HCC. Through circRNA sequencing, we identified a novel hsa_circ_0000195 (circTTC13) that is overexpressed in HCC tissues. This overexpression is linked to higher tumor grade, more advanced tumor stage, decreased ferroptosis, and poorer overall survival. Overexpression of CircTTC13 in HCC cell lines and explant tumors was associated with increased proliferation rates, enhanced metastatic capacity, and resistance to sorafenib, while also inhibiting ferroptosis. Conversely, circTTC13 silencing reduced malignant characteristics and promoted ferroptosis. In silico analysis, luciferase assays, and fluorescence in situ hybridization collectively demonstrated that circTTC13 directly targets and reduces miR-513a-5p expression, which in turn leads to the upregulation of the negative ferroptosis regulator SLC7A11. Moreover, the inhibition of SLC7A11 mirrored the effect of circTTC13 knockdown, whereas ferroptosis inhibition mimicked the effect of circTTC13 overexpression. Both circTTC13 and SLC7A11 were highly expressed in drug-resistant HCC cells, and circTTC13 silencing induced ferroptosis and reversed sorafenib resistance in explant tumors. These findings identify circTTC13 as a critical driver of HCC progression and resistance to drug-induced ferroptosis via upregulation of SLC7A11. The cicTTC13/miR-513a-5p/SLC7A11 axis represents a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ruiwei Yao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingyi Li
- The 3rd Ward of Radiotherapy Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chongkai Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kunliang Feng
- Department of Surgery, Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuru Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Luo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanqian Shi
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinqiu Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xilin Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Biliary-Pancreatic Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanlin Huang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuwei Liu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Yin
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chong Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Biliary-Pancreatic Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Wang X, Wang X, Gu J, Wei Y, Wang Y. circUBR5 promotes ribosome biogenesis and induces docetaxel resistance in triple-negative breast cancer cell lines via the miR-340-5p/CMTM6/c-MYC axis. Neoplasia 2025; 59:101062. [PMID: 39672097 PMCID: PMC11697786 DOI: 10.1016/j.neo.2024.101062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE Docetaxel (DTX) represents an effective chemotherapeutic agent for treating triple-negative breast cancer (TNBC), but the efficacy is strongly limited by drug resistance. c-MYC-mediated ribosome biogenesis is considered a feasible strategy to confront chemoresistance in BC. We elucidated the impact of CMTM6 on TNBC DTX chemoresistance by governing c-MYC-mediated ribosome biogenesis, and its upstream ceRNA regulatory pathways. METHODS DTX-resistant TNBC cells MDA-MB-231R and HCC1937R were generated by exposing sensitive cells MDA-MB-231 and HCC1937 to escalating doses of DTX. The expression patterns of CMTM6 and c-MYC were assessed by Western blot. The relationships between CMTM6 and miR-340-5p, circUBR5 and miR-340-5p were determined using bioinformatics analysis, luciferase assay, RIP, RNA in situ hybridization and biotin-labeled miR co-precipitation assay. Following ectopic expression and depletion experiments in DTX-resistant cells, cell chemoresistance, apoptosis, colony formation and nascent protein synthesis were evaluated. RESULTS CMTM6 expression was elevated in DTX-resistant TNBC cells. CMTM6 knockdown enhanced apoptosis of DTX-resistant TNBC cells and increased their sensitivity to DTX by blocking c-MYC-mediated ribosome biogenesis. Mechanistically, miR-340-5p targeted CMTM6 and negatively regulated the expression of CMTM6 in DTX-resistant TNBC cells. Moreover, circUBR5 attenuated the repression on CMTM6 expression as a ceRNA for miR-340-5p. circUBR5 knockdown inactivated c-MYC-mediated ribosome biogenesis, and therefore enhanced DTX efficacy by promoting miR-340-5p binding to CMTM6. CONCLUSION circUBR5 knockdown facilitated miR-340-5p-targeted CMTM6 via a ceRNA mechanism, thereby reducing c-MYC-mediated ribosome biogenesis and accelerating chemosensitization of DTX-resistant TNBC cells, which offered a theoretical guideline for clinical research on the feasibility of inhibiting ribosome biogenesis to reduce TNBC chemoresistance.
Collapse
Affiliation(s)
- Xuedong Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
| | - Xinping Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230041, China
| | - Juan Gu
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
| | - Yilei Wei
- Lingbi Hospital, Anhui No.2 Provincial People's Hospital, Lingbi, Anhui, 234200, China
| | - Yueping Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
- Lingbi Hospital, Anhui No.2 Provincial People's Hospital, Lingbi, Anhui, 234200, China
| |
Collapse
|
5
|
Zabeti Touchaei A, Vahidi S. Unraveling the interplay of CD8 + T cells and microRNA signaling in cancer: implications for immune dysfunction and therapeutic approaches. J Transl Med 2024; 22:1131. [PMID: 39707465 DOI: 10.1186/s12967-024-05963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
MicroRNAs (miRNAs) emerge as critical regulators of CD8 + T cell function within the complex tumor microenvironment (TME). This review explores the multifaceted interplay between miRNAs and CD8 + T cells across various cancers. We discuss how specific miRNAs influence CD8 + T cell activation, recruitment, infiltration, and effector function. Dysregulation of these miRNAs can contribute to CD8 + T cell exhaustion and immune evasion, hindering anti-tumor immunity. Conversely, manipulating miRNA expression holds promise for enhancing CD8 + T cell activity and improving cancer immunotherapy outcomes. We delve into the role of miRNAs in CD8 + T-cell function across different cancer types, including gliomas, gastric and colon cancer, oral squamous cell carcinoma, thyroid carcinoma, lymphomas, melanoma, breast cancer, renal cell carcinoma, ovarian cancer, uterine corpus endometrial cancer, bladder cancer, acute myeloid leukemia, chronic myelogenous leukemia, and osteosarcoma. Additionally, we explore how extracellular vesicles and cytokines modulate CD8 + T-cell function through complex interactions with miRNAs. Finally, we discuss the potential impact of radiotherapy and specific drugs on miRNA expression and CD8 + T-cell activity within the TME. This review highlights the immense potential of targeting miRNAs to manipulate CD8 + T-cell activity for the development of novel and improved cancer immunotherapies.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Zhao C, Zhao J, Zhang Y, Zhu Y, Yang Z, Liu S, Tang Q, Yang Y, Wang H, Shu Y, Dong P, Wu X, Gong W. PTBP3 Mediates IL-18 Exon Skipping to Promote Immune Escape in Gallbladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406633. [PMID: 39116343 PMCID: PMC11481411 DOI: 10.1002/advs.202406633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system, with poor response to current treatments. Abnormal alternative splicing has been associated with the development of a variety of tumors. Combining the GEO database and GBC mRNA-seq analysis, it is found high expression of the splicing factor polypyrimidine region- binding protein 3 (PTBP3) in GBC. Multi-omics analysis revealed that PTBP3 promoted exon skipping of interleukin-18 (IL-18), resulting in the expression of ΔIL-18, an isoform specifically expressed in tumors. That ΔIL-18 promotes GBC immune escape by down-regulating FBXO38 transcription levels in CD8+T cells to reduce PD-1 ubiquitin-mediated degradation is revealed. Using a HuPBMC mouse model, the role of PTBP3 and ΔIL-18 in promoting GBC growth is confirmed, and showed that an antisense oligonucleotide that blocked ΔIL-18 production displayed anti-tumor activity. Furthermore, that the H3K36me3 promotes exon skipping of IL-18 by recruiting PTBP3 via MRG15 is demonstrated, thereby coupling the processes of IL-18 transcription and alternative splicing. Interestingly, it is also found that the H3K36 methyltransferase SETD2 binds to hnRNPL, thereby interfering with PTBP3 binding to IL-18 pre-mRNA. Overall, this study provides new insights into how aberrant alternative splicing mechanisms affect immune escape, and provides potential new perspectives for improving GBC immunotherapy.
Collapse
Affiliation(s)
- Cheng Zhao
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| | - Jing‐wei Zhao
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| | - Yu‐han Zhang
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| | - Yi‐di Zhu
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| | - Zi‐yi Yang
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| | - Shi‐lei Liu
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| | - Qiu‐yi Tang
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| | - Yue Yang
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| | - Hua‐kai Wang
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| | - Yi‐jun Shu
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| | - Ping Dong
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| | - Xiang‐song Wu
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| | - Wei Gong
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang RoadShanghai200092China
| |
Collapse
|
7
|
Li Y, Wang Z, Gao P, Cao D, Dong R, Zhu M, Fei Y, Zuo X, Cai J. CircRHBDD1 promotes immune escape via IGF2BP2/PD-L1 signaling and acts as a nanotherapeutic target in gastric cancer. J Transl Med 2024; 22:704. [PMID: 39080693 PMCID: PMC11289934 DOI: 10.1186/s12967-024-05498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been implicated in the development and progression of gastric cancer (GC). However, it remains unclear whether dysregulated circRNA affects immune escape and the efficacy of immunotherapy in GC. Our aim is to investigate the molecular mechanism of circRNA affecting GC immunotherapy and identify effective molecular therapeutic targets. METHODS The differential expression profile of circRNAs was established through circRNA sequencing, comparing three paired GC tissues with their adjacent non-cancerous gastric tissues. The expression level of circRHBDD1 in GC tissues was then assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The biological characteristics of circRHBDD1 were verified through a series of experiments, including agarose gel electrophoresis assays, RNase R treatment, and actinomycin D experiments. The prognostic value of circRHBDD1 in GC was evaluated by conducting both univariate and multivariate survival analyses. Furthermore, loss- and gain-of-function approaches were utilized to investigate the impact of circRHBDD1 on GC immune escape. RNA-sequencing, immunoprecipitation, flow cytometry, and methylated RNA immunoprecipitation (meRIP) analysis were performed to elucidate the underlying molecular mechanisms. RESULTS We discovered that circRHBDD1 exhibited remarkably high expression levels in GC tissues and cell lines. Notably, the high expression of circRHBDD1 was significantly correlated with poor overall survival and disease-free survival among GC patients. Both in vitro and in vivo experiments revealed that circRHBDD1 upregulated the expression of PD-L1 and impeded the infiltration of CD8+ T cells. Further, we found that circRHBDD1 binds to IGF2BP2, disrupting the interaction between E3 ligase TRIM25 and IGF2BP2, and ultimately inhibiting IGF2BP2 ubiquitination and degradation. Intriguingly, IGF2BP2 enhances PD-L1 mRNA stability through m6A modification. Additionally, we developed Poly (lactide-co-glycolic acid) (PLGA)-Polyethylene glycol (PEG)-based nanoparticles loaded with circRHBDD1 siRNA. In vivo experiments validated that the combination of PLGA-PEG(si-circRHBDD1) and anti-PD-1 offers a safe and efficacious nano-drug regimen for cancer immunotherapy. CONCLUSION Our results demonstrated that circRHBDD1 promoted GC immune escape by upregulating the expression of PD-L1 and reprogramming T cell-mediated immune response. Inhibition of circRHBDD1 expression could potentially enhance the response of GC patients to immunotherapy, thus improving treatment outcomes. Additionally, the development of a nanodrug delivery system provides a feasible approach for future clinical applications.
Collapse
Affiliation(s)
- Yanna Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Peng Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Danping Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Runyu Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Menglin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Yao Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Xueliang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
| | - Juan Cai
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Department of Oncology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
8
|
Wang R, He S, Long J, Wang Y, Jiang X, Chen M, Wang J. Emerging therapeutic frontiers in cancer: insights into posttranslational modifications of PD-1/PD-L1 and regulatory pathways. Exp Hematol Oncol 2024; 13:46. [PMID: 38654302 DOI: 10.1186/s40164-024-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
The interaction between programmed cell death ligand 1 (PD-L1), which is expressed on the surface of tumor cells, and programmed cell death 1 (PD-1), which is expressed on T cells, impedes the effective activation of tumor antigen-specific T cells, resulting in the evasion of tumor cells from immune-mediated killing. Blocking the PD-1/PD-L1 signaling pathway has been shown to be effective in preventing tumor immune evasion. PD-1/PD-L1 blocking antibodies have garnered significant attention in recent years within the field of tumor treatments, given the aforementioned mechanism. Furthermore, clinical research has substantiated the efficacy and safety of this immunotherapy across various tumors, offering renewed optimism for patients. However, challenges persist in anti-PD-1/PD-L1 therapies, marked by limited indications and the emergence of drug resistance. Consequently, identifying additional regulatory pathways and molecules associated with PD-1/PD-L1 and implementing judicious combined treatments are imperative for addressing the intricacies of tumor immune mechanisms. This review briefly outlines the structure of the PD-1/PD-L1 molecule, emphasizing the posttranslational modification regulatory mechanisms and related targets. Additionally, a comprehensive overview on the clinical research landscape concerning PD-1/PD-L1 post-translational modifications combined with PD-1/PD-L1 blocking antibodies to enhance outcomes for a broader spectrum of patients is presented based on foundational research.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Shiwei He
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Jie Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Tierno D, Grassi G, Zanconati F, Dapas B, Scaggiante B. Plasma Circular RNAs as Biomarkers for Breast Cancer. Biomedicines 2024; 12:875. [PMID: 38672229 PMCID: PMC11048241 DOI: 10.3390/biomedicines12040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer (BC) is currently the most common neoplasm, the second leading cause of cancer death in women worldwide, and is a major health problem. The discovery of new biomarkers is crucial to improve our knowledge of breast cancer and strengthen our clinical approaches to diagnosis, prognosis, and follow-up. In recent decades, there has been increasing interest in circulating RNA (circRNA) as modulators of gene expression involved in tumor development and progression. The study of circulating circRNAs (ccircRNAs) in plasma may provide new non-invasive diagnostic, prognostic, and predictive biomarkers for BC. This review describes the latest findings on BC-associated ccircRNAs in plasma and their clinical utility. Several ccircRNAs in plasma have shown great potential as BC biomarkers, especially from a diagnostic point of view. Mechanistically, most of the reported BC-associated ccircRNAs are involved in the regulation of cell survival, proliferation, and invasion, mainly via MAPK/AKT signaling pathways. However, the study of circRNAs is a relatively new area of research, and a larger number of studies will be crucial to confirm their potential as plasma biomarkers and to understand their involvement in BC.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Gabriele Grassi
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Fabrizio Zanconati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Valerio 28, I-34127 Trieste, Italy
| |
Collapse
|
10
|
Gao H, Yin J, Guan X, Zhang S, Peng S, Liu X, Xing F. CMTM6 as a potential therapy target is associated with immunological tumor microenvironment and can promote migration and invasion in pancreatic adenocarcinoma. Funct Integr Genomics 2023; 23:306. [PMID: 37726578 PMCID: PMC10509136 DOI: 10.1007/s10142-023-01235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
CMTM6 has been connected to the development of several malignancies. However, it is still unknown what function CMTM6 serves in pancreatic adenocarcinoma (PAAD). We obtained RNA sequencing information of PAAD from public datasets and predicted statistical significance of CMTM6 survival in accordance with Kaplan-Meier curves. Gene set enrichment assessment (GSEA) was employed to analyze changes in pathways. Then, we systematically investigated the association involving CMTM6 and the immunological traits within the tumor microenvironment (TME) of PAAD, including immune pathways, immunomodulators, immune infiltrating cells, inflammatory activities, and immunotherapy response prediction. To demonstrate the biologically malignant properties of CMTM6 expression, the Cell Counting Kit-8, transwell experiments, colony formation, and wound healing were utilized. Upregulated CMTM6 expression was revealed within PAAD tissues, which was associated with more frequent somatic mutations and worse survival outcomes. Specifically, CMTM6 expression represented stronger immune infiltration, inflammatory activity, and better immunotherapeutic response in TME. Functional studies revealed that CMTM6 promoted the ability to proliferate, migrate, and invade. Additionally, CMTM6 and PD-L1 had a positive relationship, and CMTM6 can co-immunocoprecipitate with PD-L1 protein in pancreatic cell lines. CMTM6 overexpression shapes the inflammatory TME with a strong immune response. These findings support that CMTM6 is an immunotherapeutic target with promising effect to treat PAAD.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Songlin Peng
- Department of General Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|