1
|
Zhang Y, Liu X, Jiang G, Dong X, Chon HJ, Brandi G, Neureiter D, Hong D. Camrelizumab in combination with chemotherapy and targeted therapy improves the prognosis in patients with advanced biliary tract cancer: a single-center retrospective clinical study. J Gastrointest Oncol 2025; 16:660-670. [PMID: 40386592 PMCID: PMC12078816 DOI: 10.21037/jgo-2025-184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025] Open
Abstract
Background Biliary tract cancer (BTC) is an aggressive neoplasm with poor overall survival. Chemotherapy has improved the prognosis of BTC, but the outcomes still remain very unsatisfactory. Immune checkpoint inhibitor (ICI) therapy has shown promising efficacy in multiple solid tumors, including BTC. However, despite significant progress, the use of immunotherapy for the treatment of BTC is still in its early stages, and the evidence for its use is mixed, possibly due to inaccurate grouping based on the expression of programmed death ligand 1, a reliable candidate biomarker if carefully handled. Here, we reviewed the outcomes of camrelizumab, an Food and Drug Administration-approved anti-PD-1 ICI, combined with chemotherapy or targeted therapy in patients with advanced BTC. Methods Patients with advanced BTC treated with camrelizumab in combination with chemotherapy or targeted therapy as the first-line therapy from September 2020 to September 2023 were included in this retrospective, non-randomized and single-center design study. Treatment efficacy and treatment-related adverse events were subjected to statistical analysis. Results Fifteen patients were enrolled in this study. The mean age of the patients was 62 years (ranging from 25 to 75 years old), comprising 9 males and 6 females. The pathological diagnoses included 11 cases of intrahepatic cholangiocarcinoma, 1 case of extrahepatic cholangiocarcinoma, and 3 cases of gallbladder carcinoma. Among them, 5 cases diagnosed at stage IIa were deemed inoperable for surgery due to anticipated insufficient residual liver volume. Additionally, there were 5 cases classified as stage IIIb and 5 cases as stage IV. Seven patients achieved a partial response, and the study had an overall response rate of 46.7%. Seven patients had stable disease, with a disease control rate of 93.3%. At the cut-off date of September 30, 2023, the median follow-up time was 15.7 months (range, 1.7-33 months). The patients had a median progression-free survival time of 18 months (95% confidence interval: 12.4-not reached). Of the patients, nine (60.0%) were deemed eligible for surgery. Six patients (40%) developed grade III neutropenia, one (6.7%) developed grade IV neutropenia, and one (6.7%) developed grade III thrombocytopenia. Conclusions The application of camrelizumab as neoadjuvant therapy in the treatment of patients with advanced BTC showed encouraging efficacy and safety.
Collapse
Affiliation(s)
- Yizhuo Zhang
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guixing Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Dong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Jae Chon
- Department of Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
| | - Defei Hong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Ma H, Srivastava S, Ho SWT, Xu C, Lian BSX, Ong X, Tay ST, Sheng T, Lum HYJ, Abdul Ghani SAB, Chu Y, Huang KK, Goh YT, Lee M, Hagihara T, Ng CSY, Tan ALK, Zhang Y, Ding Z, Zhu F, Ng MSW, Joseph CRC, Chen H, Li Z, Zhao JJ, Rha SY, Teh M, Yeong J, Yong WP, So JBY, Sundar R, Tan P. Spatially Resolved Tumor Ecosystems and Cell States in Gastric Adenocarcinoma Progression and Evolution. Cancer Discov 2025; 15:767-792. [PMID: 39774838 PMCID: PMC11962405 DOI: 10.1158/2159-8290.cd-24-0605] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/17/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE Integration of spatial transcriptomic (GeoMx Digital Spatial Profiler) and single-cell RNA sequencing data from multiple gastric cancers identifies spatially resolved expression-based intratumoral heterogeneity, associated with distinct immune microenvironments. We uncovered two separate evolutionary trajectories associated with specific molecular subtypes, clinical prognoses, stromal neighborhoods, and genetic drivers. Tumor-stroma interfaces emerged as a unique state of tumor ecology.
Collapse
Affiliation(s)
- Haoran Ma
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shamaine Wei Ting Ho
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chang Xu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Xuewen Ong
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Su Ting Tay
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Taotao Sheng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | | | | | - Yunqiang Chu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yeek Teck Goh
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Minghui Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Takeshi Hagihara
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Clara Shi Ya Ng
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Angie Lay Keng Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yanrong Zhang
- Department of Information Systems and Analytics, School of Computing, National University of Singapore, Singapore, Singapore
| | - Zichen Ding
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michelle Shu Wen Ng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Craig Ryan Cecil Joseph
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hui Chen
- MGI Tech Singapore Pte. Ltd., Singapore, Singapore
| | - Zhen Li
- MGI Tech Singapore Pte. Ltd., Singapore, Singapore
| | - Joseph J. Zhao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Sun Young Rha
- Yonsei Cancer Center, Yonsei University Health System, Seoul, Republic of Korea
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ming Teh
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joe Yeong
- Department of Pathology, National University Hospital, Singapore, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Peng Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Jimmy Bok-Yan So
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raghav Sundar
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
- Singhealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Wang F, Chen G, Zhang Z, Yuan Y, Wang Y, Gao Y, Sheng W, Wang Z, Li X, Yuan X, Cai S, Ren L, Liu Y, Xu J, Zhang Y, Liang H, Wang X, Zhou A, Ying J, Li G, Cai M, Ji G, Li T, Wang J, Hu H, Nan K, Wang L, Zhang S, Li J, Xu R. The Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of colorectal cancer, 2024 update. Cancer Commun (Lond) 2025; 45:332-379. [PMID: 39739441 PMCID: PMC11947620 DOI: 10.1002/cac2.12639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
The 2024 updates of the Chinese Society of Clinical Oncology (CSCO) Clinical Guidelines for the diagnosis and treatment of colorectal cancer emphasize standardizing cancer treatment in China, highlighting the latest advancements in evidence-based medicine, healthcare resource access, and precision medicine in oncology. These updates address disparities in epidemiological trends, clinicopathological characteristics, tumor biology, treatment approaches, and drug selection for colorectal cancer patients across diverse regions and backgrounds. Key revisions include adjustments to evidence levels for intensive treatment strategies, updates to regimens for deficient mismatch repair (dMMR)/ microsatellite instability-high (MSI-H) patients, proficient mismatch repair (pMMR)/ microsatellite stability (MSS) patients who have failed standard therapies, and rectal cancer patients with low recurrence risk. Additionally, recommendations for digital rectal examination and DNA polymerase epsilon (POLE)/ DNA polymerase delta 1 (POLD1) gene mutation testing have been strengthened. The 2024 CSCO Guidelines are based on both Chinese and international clinical research, as well as expert consensus, ensuring their relevance and applicability in clinical practice, while maintaining a commitment to scientific rigor, impartiality, and timely updates.
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical OncologySun Yat‐sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Gong Chen
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerGuangzhouGuangdongP. R. China
| | - Zhen Zhang
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
| | - Ying Yuan
- Department of Medical OncologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Yi Wang
- Department of RadiologyPeking University People's HospitalBeijingP. R. China
| | - Yuan‐Hong Gao
- Department of Radiation OncologySun Yat‐sen University Cancer Centre, The State Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Weiqi Sheng
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiP. R. China
| | - Zixian Wang
- Department of Medical OncologySun Yat‐sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Xinxiang Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiP. R. China
| | - Xianglin Yuan
- Department of OncologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Sanjun Cai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiP. R. China
| | - Li Ren
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Yunpeng Liu
- Department of Medical OncologyThe First Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Jianmin Xu
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Yanqiao Zhang
- Department of OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
| | - Houjie Liang
- Department of OncologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingP. R. China
| | - Xicheng Wang
- Department of Gastrointestinal OncologyCancer Medical Center, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Aiping Zhou
- Department of Medical OncologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Jianming Ying
- Department of PathologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Guichao Li
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
| | - Muyan Cai
- Department of PathologySun Yat‐sen University Cancer Center, The State Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Gang Ji
- Department of Gastrointestinal SurgeryXijing HospitalAir Force Military Medical UniversityXi'anShaanxiP. R. China
| | - Taiyuan Li
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Jingyu Wang
- Department of RadiologyThe First Hospital of Jilin UniversityChangchunJilinP. R. China
| | - Hanguang Hu
- Department of Medical OncologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Kejun Nan
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
| | - Liuhong Wang
- Department of RadiologySecond Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Suzhan Zhang
- Department of Colorectal SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Jin Li
- Department of Medical OncologyShanghai GoBroad Cancer HospitalChina Pharmaceutical UniversityShanghaiP. R. China
| | - Rui‐Hua Xu
- Department of Medical OncologySun Yat‐sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat‐sen University, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
| |
Collapse
|
4
|
Voutsadakis IA. The Status of SOX2 Expression in Gastric Cancers with Induction of CDX2 Defines Groups with Different Genomic Landscapes. Genes (Basel) 2025; 16:279. [PMID: 40149431 PMCID: PMC11942492 DOI: 10.3390/genes16030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Gastric adenocarcinoma is a highly lethal neoplasm with a short survival especially when metastatic. Few effective treatments are available for the control of the disease and palliation of patients with metastatic gastric cancer. Although progress has been made in the elucidation of molecular pathways invoked in gastric carcinogenesis, this knowledge has not yet led to major breakthroughs, in contrast to several other types of cancer. The role of stem cell transcription factors SOX2 and CDX2 is of particular interest in the pathogenesis of gastric cancer. METHODS The cohort of gastric adenocarcinomas from The Cancer Genome Atlas (TCGA) was interrogated and two groups of gastric cancers, with CDX2 induction and SOX2 suppression on the one hand and with CDX2 induction and SOX2 maintained expression on the other hand were retained. The induction of expression of the two transcription factors was defined as a mRNA expression z score compared with normal samples above zero. The two groups were compared for clinical-pathologic and genomic differences. RESULTS Among gastric cancers with up-regulated CDX2 mRNA, cancers with suppressed SOX2 mRNA were slightly more numerous (55.9%) than those with a maintained SOX2 expression. The SOX2 suppressed group had a higher prevalence of MSI high cancers (30.9% versus 10%) and of cases with high tumor mutation burden (35% versus 12.4%) than cancers with a SOX2 maintained expression, which presented more frequently high Chromosomal Instability (CIN). The group with SOX2 suppression had higher rates of mutations in many gastric cancer-associated genes such as epigenetic modifiers ARID1A, KMT2D, KMT2C, and KMT2B, as well as higher rates of mutations in genes encoding for receptor tyrosine kinases ERBB4 and FGFR1. On the other hand, TP53 mutations and amplifications in MYC, ERBB2, and CCNE1 were more common in the group with a maintained expression of SOX2, approaching significance for MYC. CONCLUSIONS Notable differences are present in the genomic landscape of CDX2-induced gastric cancer depending on the level of expression of SOX2 mRNA. Despite this, SOX2 mRNA expression levels were not prognostic.
Collapse
Affiliation(s)
- Ioannis A. Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste. Marie, ON P6B 0A8, Canada; or
- Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
5
|
Christodoulidis G, Bartzi D, Koumarelas KE, Kouliou MN. Pembrolizumab in patients with gastric cancer and liver metastases: A paradigm shift in immunotherapy. World J Gastrointest Surg 2024; 16:3391-3394. [PMID: 39649217 PMCID: PMC11622097 DOI: 10.4240/wjgs.v16.i11.3391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 10/30/2024] Open
Abstract
In this editorial, we explore the impact of immunotherapy and its safety in patients with advanced gastric cancer (GC) and liver involvement. GC, a formidable adversary in the oncology landscape, presents its most challenging battlefront when it reaches stage IV, often characterized by liver metastases. The prognosis for patients at this advanced stage is daunting, with systemic chemotherapy traditionally offering a median overall survival slightly over a year. However, the landscape of treatment is evolving, with new strategies and therapies offering a glimmer of hope.
Collapse
Affiliation(s)
- Grigorios Christodoulidis
- Department of General Surgery, The University Hospital of Larissa, The University of Thessaly, Larissa 41110, Greece
| | - Dimitra Bartzi
- Department of Oncology, The 251 Airforce General Hospital, Athens 11525, Greece
| | | | | |
Collapse
|
6
|
Shaikh FY, Lee S, White JR, Zhao Y, Ferri JT, Pereira G, Landon BV, Ke S, Hu C, Feliciano JL, Hales RK, Voong KR, Battafarano RJ, Yang SC, Broderick S, Ha J, Thompson E, Shin EJ, Bartlett DL, Weksler B, Pardoll DM, Anagnostou V, Lam VK, Zaidi AH, Kelly RJ, Sears CL. Fecal Microbiome Composition Correlates with Pathologic Complete Response in Patients with Operable Esophageal Cancer Treated with Combined Chemoradiotherapy and Immunotherapy. Cancers (Basel) 2024; 16:3644. [PMID: 39518082 PMCID: PMC11545537 DOI: 10.3390/cancers16213644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Preclinical and clinical data indicate that chemoradiotherapy (CRT) in combination with checkpoint inhibitors may prime an anti-tumor immunological response in esophageal cancer. However, responses to neoadjuvant therapy can vary widely and the key biomarkers to determine response remain poorly understood. The fecal microbiome is a novel and potentially modifiable biomarker of immunotherapy response, and both fecal and tumor microbes have been found to associate with outcomes in esophageal cancer. Methods: Fecal and tumor samples were collected from patients with stage II-III resectable esophageal or gastroesophageal junction carcinoma treated with neoadjuvant immune checkpoint inhibitors (ICIs) plus CRT prior to surgical resection. Microbiome profiles were analyzed by 16S rRNA amplicon sequencing and taxonomic data were integrated with fecal metabolite analysis to assess microbial function. Results: The fecal microbiome of patients with pathological complete response (PCR) grouped in distinct clusters compared to patients with residual viable tumor (RVT) by Bray-Curtis diversity metric. Integrated taxonomic and metabolomic analysis of fecal samples identified a sphingolipid and primary bile acid as enriched in the PCR, the levels of which correlated with several bacterial species: Roseburis inulinivorans, Ruminococcus callidus, and Fusicantenibacter saccharivorans. Analysis of the tumor microbiome profiles identified several bacterial genera previously associated with esophageal tumors, including Streptococcus and Veillonella. Conclusions: These results further characterize the fecal and tumor microbiome of patients with operable esophageal cancer and identify specific microbes and metabolites that may help elucidate how microbes contribute to tumor response with neoadjuvant CRT combined with ICI.
Collapse
Affiliation(s)
- Fyza Y. Shaikh
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seoho Lee
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Yujie Zhao
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Jacqueline T. Ferri
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gavin Pereira
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Blair V. Landon
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Suqi Ke
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chen Hu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Josephine L. Feliciano
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Russell K. Hales
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - K. Ranh Voong
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard J. Battafarano
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen C. Yang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen Broderick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jinny Ha
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth Thompson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eun J. Shin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David L. Bartlett
- Allegheny Health Network Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Benny Weksler
- Allegheny Health Network Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Drew M. Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valsamo Anagnostou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vincent K. Lam
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ali H. Zaidi
- Allegheny Health Network Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Ronan J. Kelly
- The Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Cynthia L. Sears
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Ayala-de Miguel C, Jiménez-Castro J, Sánchez-Vegas A, Díaz-López S, Chaves-Conde M. Third-line treatment and beyond in metastatic colorectal cancer: What do we have and what can we expect? Crit Rev Oncol Hematol 2024; 202:104454. [PMID: 39043356 DOI: 10.1016/j.critrevonc.2024.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024] Open
Abstract
Colorectal cancer remains the third most common cancer worldwide and the second cause of cancer-related death. Treatment advances and precision oncological medicine for these tumours have been stalled in comparison to those for other common tumours such as lung and breast cancer. However, the recent publication of the SUNLIGHT trial results with the trifluridine/tipiracil (TAS-102)-bevacizumab combination and the irruption of new molecular targets with guided treatments have opened new possibilities in third-line metastatic colorectal cancer management. Anti-EGFR rechallenge, anti-HER2 targeted therapies or the promising results of Pressurised Intraperitoneal Aerosol Chemotherapy (PIPAC), are some of the available options that may modify what is presumably third-line colorectal treatment. Hereby, we present the evidence of the different treatment options in third-line colorectal cancer and beyond, as well as the possibilities of sequencing them.
Collapse
Affiliation(s)
- Carlos Ayala-de Miguel
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Jerónimo Jiménez-Castro
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Adrián Sánchez-Vegas
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Sebastián Díaz-López
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Manuel Chaves-Conde
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| |
Collapse
|
8
|
Chen L, Hu H, Yuan Y, Weng S. CSCO guidelines for colorectal cancer version 2024: Updates and discussions. Chin J Cancer Res 2024; 36:233-239. [PMID: 38988483 PMCID: PMC11230882 DOI: 10.21147/j.issn.1000-9604.2024.03.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Liubo Chen
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hanguang Hu
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Yuan
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Weng
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
9
|
Kelly RJ, Landon BV, Zaidi AH, Singh D, Canzoniero JV, Balan A, Hales RK, Voong KR, Battafarano RJ, Jobe BA, Yang SC, Broderick S, Ha J, Marrone KA, Pereira G, Rao N, Borole A, Karaindrou K, Belcaid Z, White JR, Ke S, Amjad AI, Weksler B, Shin EJ, Thompson E, Smith KN, Pardoll DM, Hu C, Feliciano JL, Anagnostou V, Lam VK. Neoadjuvant nivolumab or nivolumab plus LAG-3 inhibitor relatlimab in resectable esophageal/gastroesophageal junction cancer: a phase Ib trial and ctDNA analyses. Nat Med 2024; 30:1023-1034. [PMID: 38504015 PMCID: PMC11031406 DOI: 10.1038/s41591-024-02877-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024]
Abstract
Gastroesophageal cancer dynamics and drivers of clinical responses with immune checkpoint inhibitors (ICI) remain poorly understood. Potential synergistic activity of dual programmed cell death protein 1 (PD-1) and lymphocyte-activation gene 3 (LAG-3) inhibition may help improve immunotherapy responses for these tumors. We report a phase Ib trial that evaluated neoadjuvant nivolumab (Arm A, n = 16) or nivolumab-relatlimab (Arm B, n = 16) in combination with chemoradiotherapy in 32 patients with resectable stage II/stage III gastroesophageal cancer together with an in-depth evaluation of pathological, molecular and functional immune responses. Primary endpoint was safety; the secondary endpoint was feasibility; exploratory endpoints included pathological complete (pCR) and major pathological response (MPR), recurrence-free survival (RFS) and overall survival (OS). The study met its primary safety endpoint in Arm A, although Arm B required modification to mitigate toxicity. pCR and MPR rates were 40% and 53.5% for Arm A and 21.4% and 57.1% for Arm B. Most common adverse events were fatigue, nausea, thrombocytopenia and dermatitis. Overall, 2-year RFS and OS rates were 72.5% and 82.6%, respectively. Higher baseline programmed cell death ligand 1 (PD-L1) and LAG-3 expression were associated with deeper pathological responses. Exploratory analyses of circulating tumor DNA (ctDNA) showed that patients with undetectable ctDNA post-ICI induction, preoperatively and postoperatively had a significantly longer RFS and OS; ctDNA clearance was reflective of neoantigen-specific T cell responses. Our findings provide insights into the safety profile of combined PD-1 and LAG-3 blockade in gastroesophageal cancer and highlight the potential of ctDNA analysis to dynamically assess systemic tumor burden during neoadjuvant ICI that may open a therapeutic window for future intervention. ClinicalTrials.gov registration: NCT03044613 .
Collapse
Affiliation(s)
- Ronan J Kelly
- The Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| | - Blair V Landon
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ali H Zaidi
- Allegheny Health Network Cancer Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Dipika Singh
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jenna V Canzoniero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Archana Balan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell K Hales
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K Ranh Voong
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard J Battafarano
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Blair A Jobe
- Allegheny Health Network Cancer Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Stephen C Yang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Broderick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinny Ha
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen A Marrone
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gavin Pereira
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nisha Rao
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aryan Borole
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katerina Karaindrou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zineb Belcaid
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R White
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Suqi Ke
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ali I Amjad
- Allegheny Health Network Cancer Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Benny Weksler
- Allegheny Health Network Cancer Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Eun Ji Shin
- Department of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Thompson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kellie N Smith
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chen Hu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Josephine L Feliciano
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Lung Cancer Precision Medicine Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Vincent K Lam
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
El Homsi M, Bane O, Fauveau V, Hectors S, Vietti Violi N, Sylla P, Ko HB, Cuevas J, Carbonell G, Nehlsen A, Vanguri R, Viswanath S, Jambawalikar S, Shaish H, Taouli B. Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics. Abdom Radiol (NY) 2024; 49:791-800. [PMID: 38150143 DOI: 10.1007/s00261-023-04128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE To assess the role of pretreatment multiparametric (mp)MRI-based radiomic features in predicting pathologic complete response (pCR) of locally advanced rectal cancer (LARC) to neoadjuvant chemoradiation therapy (nCRT). METHODS This was a retrospective dual-center study including 98 patients (M/F 77/21, mean age 60 years) with LARC who underwent pretreatment mpMRI followed by nCRT and total mesorectal excision or watch and wait. Fifty-eight patients from institution 1 constituted the training set and 40 from institution 2 the validation set. Manual segmentation using volumes of interest was performed on T1WI pre-/post-contrast, T2WI and diffusion-weighted imaging (DWI) sequences. Demographic information and serum carcinoembryonic antigen (CEA) levels were collected. Shape, 1st and 2nd order radiomic features were extracted and entered in models based on principal component analysis used to predict pCR. The best model was obtained using a k-fold cross-validation method on the training set, and AUC, sensitivity and specificity for prediction of pCR were calculated on the validation set. RESULTS Stage distribution was T3 (n = 79) or T4 (n = 19). Overall, 16 (16.3%) patients achieved pCR. Demographics, MRI TNM stage, and CEA were not predictive of pCR (p range 0.59-0.96), while several radiomic models achieved high diagnostic performance for prediction of pCR (in the validation set), with AUCs ranging from 0.7 to 0.9, with the best model based on high b-value DWI demonstrating AUC of 0.9 [95% confidence intervals: 0.67, 1], sensitivity of 100% [100%, 100%], and specificity of 81% [66%, 96%]. CONCLUSION Radiomic models obtained from pre-treatment MRI show good to excellent performance for the prediction of pCR in patients with LARC, superior to clinical parameters and CEA. A larger study is needed for confirmation of these results.
Collapse
Affiliation(s)
- Maria El Homsi
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York av, New York, USA.
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valentin Fauveau
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefanie Hectors
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Naik Vietti Violi
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Patricia Sylla
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Huai-Bin Ko
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Columbia University Medical Center, New York, NY, USA
| | - Jordan Cuevas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guillermo Carbonell
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Anthony Nehlsen
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rami Vanguri
- Department of Epidemiology & Biostatistics, Columbia University Medical Center, New York, NY, USA
| | - Satish Viswanath
- Department of Radiology, Case Western University, Cleveland, OH, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Hiram Shaish
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Monge C, Xie C, Myojin Y, Coffman‐D'Annibale KL, Hrones D, Brar G, Wang S, Budhu A, Figg WD, Cam M, Finney R, Levy EB, Kleiner DE, Steinberg SM, Wang XW, Redd B, Wood BJ, Greten TF. Combined immune checkpoint inhibition with durvalumab and tremelimumab with and without radiofrequency ablation in patients with advanced biliary tract carcinoma. Cancer Med 2024; 13:e6912. [PMID: 38205877 PMCID: PMC10904979 DOI: 10.1002/cam4.6912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Current standard of care for advanced biliary tract cancer (BTC) is gemcitabine, cisplatin plus anti-PD1/PD-L1, but response rates are modest. The purpose of this study was to explore the efficacy and safety of durvalumab (anti-PD-L1) and tremelimumab (anti-CTLA-4), with and without an interventional radiology (IR) procedure in advanced BTC. METHODS Eligible patients with advanced BTC who had received or refused at least one prior line of systemic therapy were treated with tremelimumab and durvalumab for four combined doses followed by monthly durvalumab alone with and without an IR procedure until the progression of disease or unacceptable toxicity. Objective response was assessed through CT or MRI by Response Evaluation Criteria in Solid Tumors (RECIST, version 1.1) every 8 weeks. Adverse events (AEs) were recorded and managed. The primary endpoint was 6-month progression-free survival (PFS). RESULTS Twenty-three patients with advanced BTC were enrolled; 17 patients were assigned to treatment with durvalumab and tremelimumab (Durva/Treme); and 6 patients were treated with the combination of durvalumab, tremelimumab plus IR procedure (Durva/Treme + IR). The best clinical responses in the Durva/Treme arm were partial response (n = 1), stable disease (n = 5), progressive disease (n = 5), and in the Durva/Treme + IR arm: partial response (n = 0), stable disease (n = 3), progressive disease (n = 3). The median PFS was 2.2 months (95% CI: 1.3-3.1 months) in the Durva/Treme arm and 2.9 months (95% CI: 1.9-4.7 months) in the Durva/Treme + IR arm (p = 0.27). The median OS was 5.1 months (95% CI: 2.5-6.9 months) in the Durva/Treme arm and 5.8 months (95% CI: 2.9-40.1 months) in the Durva/Treme + IR arm (p = 0.31). The majority of AEs were grades 1-2. CONCLUSION Durva/Treme and Durva/Treme + IR showed similar efficacy. With a manageable safety profile. Larger studies are needed to fully characterize the efficacy of Durva/Treme ± IR in advanced BTC.
Collapse
Affiliation(s)
- Cecilia Monge
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Changqing Xie
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Yuta Myojin
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Kelley L. Coffman‐D'Annibale
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Donna Hrones
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Gagandeep Brar
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Sophie Wang
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
- Liver Cancer Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - William D. Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Maggie Cam
- Center for Collaborative Bioinformatics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Richard Finney
- Center for Collaborative Bioinformatics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Elliot B. Levy
- Center for Interventional Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - David E. Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
- Liver Cancer Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Bernadette Redd
- Radiology and Imaging Sciences, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Bradford J. Wood
- Center for Collaborative Bioinformatics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Tim F. Greten
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
- Liver Cancer Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
12
|
Lynch E, Duffy AG, Kelly RJ. Role of Immunotherapy in Gastroesophageal Cancers-Advances, Challenges and Future Strategies. Cancers (Basel) 2023; 15:5401. [PMID: 38001661 PMCID: PMC10670173 DOI: 10.3390/cancers15225401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Gastroesophageal cancers (GECs) carry considerable morbidity and mortality, and demonstrate geographical histological variances in addition to molecular heterogeneity. Consequently, the immunogenicity of the different subtypes, which can predict the likelihood of immunotherapy response, can vary. Immune checkpoint inhibitor (ICI) therapy has transformed the treatment of many cancer types over the past decade but has been slower to gain a foothold in the treatment paradigm of GECs. METHODS This article reviews the existing evidence and use approvals for immunotherapies and immune-based treatments in GECs, in the neoadjuvant, adjuvant and metastatic disease settings. The challenges of and limitations to ICI application in current clinical practice are examined. Ongoing clinical trials and future directions of research are also considered. CONCLUSION ICI therapy has become an established treatment option within GECs, both perioperatively and in advanced disease. However, nuances in terms of its use are not yet fully understood. Ongoing research proposes to broaden the application of immunotherapies in GECs with the potential to continue to improve outcomes.
Collapse
Affiliation(s)
- Emer Lynch
- Department of Medical Oncology, The Mater Hospital, D07 R2WY Dublin, Ireland; (E.L.); (A.G.D.)
| | - Austin G. Duffy
- Department of Medical Oncology, The Mater Hospital, D07 R2WY Dublin, Ireland; (E.L.); (A.G.D.)
| | - Ronan J. Kelly
- The Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246, USA
| |
Collapse
|
13
|
Karim F, Amin A, Liu M, Vishnuvardhan N, Amin S, Shabbir R, Swed B, Khan U. Role of Checkpoint Inhibitors in the Management of Gastroesophageal Cancers. Cancers (Basel) 2023; 15:4099. [PMID: 37627127 PMCID: PMC10452271 DOI: 10.3390/cancers15164099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
PURPOSE This article reviews the essential clinical trials that have led to these immunotherapy approvals and explores the use of predictive biomarkers, such as PD-L1 expression and MSI status, to identify patients who are most likely to benefit from immunotherapies. METHODS This case review series describe findings from different clinical trials and contribute to the evolving understanding of the role of CPIs in managing advanced gastroesophageal cancers and may lead to improved treatment options and patient outcomes. Ongoing clinical trials also hold promise for expanding treatment options and improving patient outcomes in the future. METHODS The systematic review followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The protocol has not been registered. A systematic literature review was conducted to identify relevant clinical trials and studies that describe the role of immune checkpoint inhibitors in managing advanced gastroesophageal cancers. Electronic database (PubMed, Clinicaltrials.gov, Society of Immunotherapy of Cancer, Aliment Pharmacology & Therapeutics, BMC cancer, Molecular Cancer Research, Nature Reviews Molecular Cell Biology, American Association for Cancer Research, Science, Nature, Cancer Discovery, Journal of the National Cancer Institute, Advanced Immunology, Oncotarget, Nature Medicine, Nature Genetics, Gut, Pathology and Oncology Research, Journal of Clinical Oncology, The New England Journal of Medicine, Gastrointestinal oncology, JAMA Oncology, Journal of Gastrointestinal Oncology, Current Oncology, Annals of Oncology, The Lancet, JCO Oncology Practice, Future Oncology, Gastric Cancer, CA: A Cancer Journal for Clinicians, American Journal of Gastroenterology, Gastroenterology, Journal of the National Cancer Institute, International Journal of Epidemiology, Helicobacter, Gastroenterology Review) were searched using a combination of relevant keywords and MESH terms. The search encompassed articles published up to 5/2023. Additionally, manual searches of reference lists of selected articles and pertinent review papers were conducted to ensure comprehensive coverage of relevant studies. Studies were included if they provided insights into clinical trials evaluating the efficacy and safety of CPIs in treating advanced gastroesophageal cancers. Relevant case reviews and trials exploring combination therapies involving CPIs were also considered. Articles discussed in the utilization of predictive biomarkers were included to assess their impact on treatment outcomes. Data from selected studies were extracted to inform the narrative review. Key findings were summarized, including clinical trial designs, patient populations, treatment regimens, response rates, progression-free survival (PFS), overall survival (OS), and adverse events. The role of predictive biomarkers, particularly PD-L1 expression and MSI status, in identifying patients likely to benefit from CPIs was critically evaluated based on study results. Ongoing clinical trials investigating novel combination strategies and exploring the broader scope of CPIs in gastroesophageal cancers were also highlighted. The collected data were synthesized to provide a comprehensive overview of the crucial clinical trials that have contributed to the approval of CPIs for advanced gastroesophageal cancers. The role of CPIs in different lines of therapy, including first-line regimens, was discussed. Furthermore, the evolving landscape of predictive biomarkers was examined, emphasizing their potential significance in optimizing patient selection for CPI therapy. Ongoing clinical trials were reviewed to underscore the continuous efforts in expanding treatment options and improving patient outcomes in the future.
Collapse
Affiliation(s)
- Frederic Karim
- Internal Medicine, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA; (A.A.); (M.L.); (S.A.); (R.S.)
| | - Adina Amin
- Internal Medicine, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA; (A.A.); (M.L.); (S.A.); (R.S.)
| | - Marie Liu
- Internal Medicine, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA; (A.A.); (M.L.); (S.A.); (R.S.)
| | - Nivetha Vishnuvardhan
- Hematology/Oncology, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA;
| | - Saif Amin
- Internal Medicine, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA; (A.A.); (M.L.); (S.A.); (R.S.)
| | - Raffey Shabbir
- Internal Medicine, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA; (A.A.); (M.L.); (S.A.); (R.S.)
| | - Brandon Swed
- Hematology/Oncology, Weill Cornell Medicine, 515 6th Street, Brooklyn, NY 11215, USA; (B.S.); (U.K.)
| | - Uqba Khan
- Hematology/Oncology, Weill Cornell Medicine, 515 6th Street, Brooklyn, NY 11215, USA; (B.S.); (U.K.)
| |
Collapse
|