1
|
Wang H, Lin S, Xie J, Chen X, Deng Y, Huang P, Peng K, Gao W, Ye G, Wang G, Yu X, Wen H, Qin L, Zhou Y. Chondroitin sulfate nanoparticles based on co-delivery dual drug induced ferroptosis in lung cancer cells by disrupting mitochondrial oxidative homeostasis. Mater Today Bio 2025; 31:101632. [PMID: 40124332 PMCID: PMC11930224 DOI: 10.1016/j.mtbio.2025.101632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
Mitochondrial REDOX homeostasis is unbalanced by large amounts of reactive oxygen species production and reduced glutathione, leading to lipid oxidation-induced ferroptosis, which enhanced cancer immunotherapy. Thus, disrupting mitochondrial redox homeostasis represents a promising strategy for the treatment of lung cancer. In this study, a co-delivery system of based on chondroitin sulfate (CS) (CS-CA-CUR-TPP, CCCT) for natural medicines (Curcumin, CUR; and Cinnamaldehyde CA) was successfully constructed, which resulted in elevated ROS levels in cancer cells. Under the action of CS specifically targeting tumor cells, CCCT NPs is enriched and taken up by lung cancer cells. Acid responsiveness causes the CCCT NPs to break and escape from the lysosome, and CUR targets and destroys mitochondria under the action of mitochondrial target head triphenylphosphine (TPP). CA collaborates with CUR to produce large amounts of ROS and reduce GSH in a time-dependent manner in mitochondria for disruption of REDOX homeostasis, and triggers ferroptosis by reducing the expression of GXP4 and xCT proteins. The immunogenic cell death (ICD) after ferroptosis promotes interferon γ (IFN-γ), TNF-a, and IL-6 secretion. Our results desmontrat CCCT can promote inhibition of tumor growth by enhancing tumor immunogenicity. This study may provide a potential avenue for the advancement of self-delivery nanoparticles to overcome resistance to apoptosis in tumor therapy.
Collapse
Affiliation(s)
- He Wang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong 511436 Guangzhou, People's Republic of China
- The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260 Guangzhou, People's Republic of China
| | - Shuimu Lin
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong 511436 Guangzhou, People's Republic of China
| | - Jiacui Xie
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong 511436 Guangzhou, People's Republic of China
| | - Xuming Chen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong 511436 Guangzhou, People's Republic of China
| | - Yating Deng
- The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260 Guangzhou, People's Republic of China
| | - Pei Huang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260 Guangzhou, People's Republic of China
| | - Kanglong Peng
- Guangdong Yuewei Pharmaceutical Co., LTD, Guangdong, 515422 Jieyang, People's Republic of China
| | - Wenhui Gao
- Affiliated Cancer Hospital and Institue of Guangzhou Medical University, Guangdong, 510350 Guangzhou, People's Republic of China
| | - Guodong Ye
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong 511436 Guangzhou, People's Republic of China
| | - Guihua Wang
- Jiangzhong Pharmaceutical Co., LTD, Jiangxi, 330001 Nanchan, People's Republic of China
| | - Xiyong Yu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong 511436 Guangzhou, People's Republic of China
| | - Huaying Wen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong 511436 Guangzhou, People's Republic of China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, People's Republic of China
| | - Yi Zhou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong 511436 Guangzhou, People's Republic of China
- Jiangzhong Pharmaceutical Co., LTD, Jiangxi, 330001 Nanchan, People's Republic of China
- Guangdong Yuewei Pharmaceutical Co., LTD, Guangdong, 515422 Jieyang, People's Republic of China
| |
Collapse
|
2
|
Xie M, Jiang P, Yang X, Sun D, Zhu B, Zhu X, Ding S, Gao J, Yang X, Shi H. Astemizole Exacerbates 5-Fluorouracil-Triggered Cardiotoxicity by Enhancing Ptgs2. Cardiovasc Toxicol 2025; 25:205-215. [PMID: 39779614 DOI: 10.1007/s12012-024-09953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
5-fluorouracil (5-FU), a commonly utilized antitumor agent for the treatment of colon cancer, is linked to an increased risk of cardiovascular diseases. Antihistamines including astemizole (AST) have been reported to present cardiovascular toxicity; however, it remains unclear how 5-FU-mediated cardiotoxicity is affected by AST during the treatment of colon cancer. This study explored the role of AST in 5-FU-induced cardiotoxicity in colon cancer. 5-FU was used to induce cardiotoxicity in cardiomyocytes (HL-1 cells) and BALBc mice, creating in vitro and in vivo models of chemotherapeutic drug-induced cardiotoxicity. In the mice model, we found that the blocking of histamine signal by AST aggravated 5-FU-induced cardiac function injury and cardiac fibrosis. In HL-1 cardiomyocyte cells, the increases of apoptosis and generation of mitochondrial reactive oxygen species (mtROS) were evaluated after the combination treatment of AST and 5-FU. Proinflammatory M1-like-type macrophages were dominant in the AST and 5-FU combination group compared to control groups. The protein expression of prostaglandin-endoperoxide synthase 2 (Ptgs2) was assessed both in vitro and in vivo using Western blot analysis. Clinically, altered Ptgs2 was closely associated with adverse cardiovascular outcomes. Overall, the combination of AST and 5-FU significantly enhanced cardiotoxicity by inducing cardiomyocyte apoptosis, inflammation, and the expression of Ptgs2.
Collapse
MESH Headings
- Animals
- Fluorouracil/toxicity
- Cardiotoxicity
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Cyclooxygenase 2/metabolism
- Apoptosis/drug effects
- Mice, Inbred BALB C
- Disease Models, Animal
- Male
- Astemizole/toxicity
- Reactive Oxygen Species/metabolism
- Fibrosis
- Heart Diseases/chemically induced
- Heart Diseases/enzymology
- Heart Diseases/pathology
- Heart Diseases/physiopathology
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/pathology
- Signal Transduction
- Drug Synergism
- Ventricular Function, Left/drug effects
- Mice
- Antimetabolites, Antineoplastic/toxicity
- Macrophages/drug effects
- Macrophages/enzymology
- Macrophages/pathology
- Cell Line
Collapse
Affiliation(s)
- Mengshi Xie
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China
| | - Pan Jiang
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Nutrition, QingPu District Central Hospital, Shanghai, China
| | - Xiyang Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dili Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baoling Zhu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong, China
| | - Xiaowei Zhu
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China
- Department of Intensive Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suling Ding
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Yang
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China.
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Cardiology, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang Hunan, China.
| | - Hongyu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Liu P, Zhao L, Kroemer G, Kepp O. Elimination of cDC1 cells by regulatory T cells jeopardizes cancer immunotherapy. Oncoimmunology 2024; 13:2412874. [PMID: 39376580 PMCID: PMC11457612 DOI: 10.1080/2162402x.2024.2412874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
Recent findings revealed that neoantigen-specific cytotoxic type 1 regulatory T (TR1) CD4 T cells can subvert cancer immunotherapy by killing type 1 conventional dendritic cells (cDC1s) that present tumor antigens bound to MHC class II. This underlines the importance of cDC1s for eliciting anticancer immunity but poses a novel clinical challenge.
Collapse
Affiliation(s)
- Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| |
Collapse
|
4
|
Zhang B, Liu J, Mo Y, Zhang K, Huang B, Shang D. CD8 + T cell exhaustion and its regulatory mechanisms in the tumor microenvironment: key to the success of immunotherapy. Front Immunol 2024; 15:1476904. [PMID: 39372416 PMCID: PMC11452849 DOI: 10.3389/fimmu.2024.1476904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
A steady dysfunctional state caused by chronic antigen stimulation in the tumor microenvironment (TME) is known as CD8+ T cell exhaustion. Exhausted-like CD8+ T cells (CD8+ Tex) displayed decreased effector and proliferative capabilities, elevated co-inhibitory receptor generation, decreased cytotoxicity, and changes in metabolism and transcription. TME induces T cell exhaustion through long-term antigen stimulation, upregulation of immune checkpoints, recruitment of immunosuppressive cells, and secretion of immunosuppressive cytokines. CD8+ Tex may be both the reflection of cancer progression and the reason for poor cancer control. The successful outcome of the current cancer immunotherapies, which include immune checkpoint blockade and adoptive cell treatment, depends on CD8+ Tex. In this review, we are interested in the intercellular signaling network of immune cells interacting with CD8+ Tex. These findings provide a unique and detailed perspective, which is helpful in changing this completely unpopular state of hypofunction and intensifying the effect of immunotherapy.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuying Mo
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Zhou Z, Mai Y, Zhang G, Wang Y, Sun P, Jing Z, Li Z, Xu Y, Han B, Liu J. Emerging role of immunogenic cell death in cancer immunotherapy: Advancing next-generation CAR-T cell immunotherapy by combination. Cancer Lett 2024; 598:217079. [PMID: 38936505 DOI: 10.1016/j.canlet.2024.217079] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yumiao Mai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yingjie Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pan Sun
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohe Jing
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
6
|
Galluzzi L, Guilbaud E, Schmidt D, Kroemer G, Marincola FM. Targeting immunogenic cell stress and death for cancer therapy. Nat Rev Drug Discov 2024; 23:445-460. [PMID: 38622310 PMCID: PMC11153000 DOI: 10.1038/s41573-024-00920-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Immunogenic cell death (ICD), which results from insufficient cellular adaptation to specific stressors, occupies a central position in the development of novel anticancer treatments. Several therapeutic strategies to elicit ICD - either as standalone approaches or as means to convert immunologically cold tumours that are insensitive to immunotherapy into hot and immunotherapy-sensitive lesions - are being actively pursued. However, the development of ICD-inducing treatments is hindered by various obstacles. Some of these relate to the intrinsic complexity of cancer cell biology, whereas others arise from the use of conventional therapeutic strategies that were developed according to immune-agnostic principles. Moreover, current discovery platforms for the development of novel ICD inducers suffer from limitations that must be addressed to improve bench-to-bedside translational efforts. An improved appreciation of the conceptual difference between key factors that discriminate distinct forms of cell death will assist the design of clinically viable ICD inducers.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | | |
Collapse
|
7
|
Pan H, Liu P, Zhao L, Pan Y, Mao M, Kroemer G, Kepp O. Immunogenic cell stress and death in the treatment of cancer. Semin Cell Dev Biol 2024; 156:11-21. [PMID: 37977108 DOI: 10.1016/j.semcdb.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The successful treatment of oncological malignancies which results in long-term disease control or the complete eradication of cancerous cells necessitates the onset of adaptive immune responses targeting tumor-specific antigens. Such desirable anticancer immunity can be triggered via the induction of immunogenic cell death (ICD) of cancer cells, thus converting malignant cells into an in situ vaccine that elicits T cell mediated adaptive immune responses and establishes durable immunological memory. The exploration of ICD for cancer treatment has been subject to extensive research. However, functional heterogeneity among ICD activating therapies in many cases requires specific co-medications to achieve full-blown efficacy. Here, we described the hallmarks of ICD and classify ICD activators into three distinct functional categories namely, according to their mode of action: (i) ICD inducers, which increase the immunogenicity of malignant cells, (ii) ICD sensitizers, which prime cellular circuitries for ICD induction by conventional cytotoxic agents, and (iii) ICD enhancers, which improve the perception of ICD signals by antigen presenting dendritic cells. Altogether, ICD induction, sensitization and enhancement offer the possibility to convert well-established conventional anticancer therapies into immunotherapeutic approaches that activate T cell-mediated anticancer immunity.
Collapse
Affiliation(s)
- Hui Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Misha Mao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France; Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France.
| |
Collapse
|
8
|
Liu P, Zhao L, Zitvogel L, Kepp O, Kroemer G. Immunogenic cell death (ICD) enhancers-Drugs that enhance the perception of ICD by dendritic cells. Immunol Rev 2024; 321:7-19. [PMID: 37596984 DOI: 10.1111/imr.13269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
The search for immunostimulatory drugs applicable to cancer immunotherapy may profit from target-agnostic methods in which agents are screened for their functional impact on immune cells cultured in vitro without any preconceived idea on their mode of action. We have built a synthetic mini-immune system in which stressed and dying cancer cells (derived from standardized cell lines) are confronted with dendritic cells (DCs, derived from immortalized precursors) and CD8+ T-cell hybridoma cells expressing a defined T-cell receptor. Using this system, we can identify three types of immunostimulatory drugs: (i) pharmacological agents that stimulate immunogenic cell death (ICD) of malignant cells; (ii) drugs that act on DCs to enhance their response to ICD; and (iii) drugs that act on T cells to increase their effector function. Here, we focus on strategies to develop drugs that enhance the perception of ICD by DCs and to which we refer as "ICD enhancers." We discuss examples of ICD enhancers, including ligands of pattern recognition receptors (exemplified by TLR3 ligands that correct the deficient function of DCs lacking FPR1) and immunometabolic modifiers (exemplified by hexokinase-2 inhibitors), as well as methods for target deconvolution applicable to the mechanistic characterization of ICD enhancers.
Collapse
Affiliation(s)
- Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Laurence Zitvogel
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Gustave Roussy, ClinicObiome, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
9
|
Liu P, Zhao L, Zitvogel L, Kepp O, Kroemer G. The BCL2 inhibitor venetoclax mediates anticancer effects through dendritic cell activation. Cell Death Differ 2023; 30:2447-2451. [PMID: 37845384 PMCID: PMC10733328 DOI: 10.1038/s41418-023-01232-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
BCL2 is an apoptosis-inhibitory oncoprotein that also possesses apoptosis-unrelated activities. Pharmacological BCL2 inhibitors have been developed with the scope of driving BCL2-dependent cancer cells into apoptosis, and one BCL2 antagonist, venetoclax, has been clinically approved for the treatment of specific leukemias and lymphomas. Nonetheless, it appears that venetoclax, as well as genetic BCL2 inhibition, can mediate anticancer effects through an indirect action. Such an indirect effect relies on the enhancement of the immunostimulatory function of dendritic cells, hence increasing tumor immunosurveillance. Mechanistically, BCL2 inhibition involves improved antigen presentation by conventional type-1 dendritic cells (cDC1s) due to the activation of an interferon response, leading to a T cell-mediated anticancer immune response that can be further enhanced by PD-1 blockade. These findings support the emerging hypothesis that successful antineoplastic drugs generally mediate their effects indirectly, through the immune system, rather via merely cell-autonomous effects on malignant cells.
Collapse
Affiliation(s)
- Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
10
|
Liu P, Zhao L, Kroemer G, Kepp O. Conventional type 1 dendritic cells (cDC1) in cancer immunity. Biol Direct 2023; 18:71. [PMID: 37907944 PMCID: PMC10619282 DOI: 10.1186/s13062-023-00430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer immunotherapy, alone or in combination with conventional therapies, has revolutionized the landscape of antineoplastic treatments, with dendritic cells (DC) emerging as key orchestrators of anti-tumor immune responses. Among the distinct DC subsets, conventional type 1 dendritic cells (cDC1) have gained prominence due to their unique ability to cross-present antigens and activate cytotoxic T lymphocytes. This review summarizes the distinctive characteristics of cDC1, their pivotal role in anticancer immunity, and the potential applications of cDC1-based strategies in immunotherapy.
Collapse
Affiliation(s)
- Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France.
| |
Collapse
|
11
|
Liu P, Kroemer G, Kepp O. Histamine antagonists promote cancer immunosurveillance. Oncoimmunology 2023; 12:2242211. [PMID: 37554311 PMCID: PMC10405763 DOI: 10.1080/2162402x.2023.2242211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Recently, a cellular mini-immune system comprising infinitely expandable dendritic cells and T cells led to the discovery that histamine receptor H1 antagonists act on T cells to stimulate their proliferation and polarization toward a Th1/Tc1 phenotype and to increase their anticancer activity in the context of immunochemotherapy.
Collapse
Affiliation(s)
- Peng Liu
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| |
Collapse
|