1
|
Gao B, Jing Y, Li X, Cong S. Ubiquitin specific peptidase 11 knockdown slows Huntington's disease progression via regulating mitochondrial dysfunction and neuronal damage depending on PTEN-mediated AKT pathway. Mol Med 2025; 31:7. [PMID: 39780069 PMCID: PMC11715466 DOI: 10.1186/s10020-024-01061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear. METHODS To interfere with USP11 expression, adeno-associated viruses 2 containing USP11-specific shRNA were injected into the bilateral striatum of 12-week-old R6/1 and WT mice. In vitro, the inducible PC12 cell model of HD was used in which the expression of an N-terminal truncation of huntingtin, with either wild type (Q23) or expanded polyglutamine (Q74) can be induced by the doxycycline. USP11 was knocked down to study its role in HD. The protein expression patterns in Q74 cells were quantified by label-free proteomics to further explore the target protein of USP11. Detecting the association between USP11 and Phosphatase and Tensin Homolog (PTEN) through Co-IP. RESULTS Herein, USP11 was found to be upregulated in the striatum of R6/1 mice (an HD model with gradual development of symptoms) in an age-dependent manner. The spontaneous HD was alleviated by silencing USP11, as evidenced by improved locomotor activity and spatial memory, attenuated striatal atrophy in R6/1 mice, reduced accumulation of mutant huntingtin protein, and restored mitochondrial function in vitro and in vivo. The results of label-free proteomics revealed a significant change in the protein expression profile. Through functional enrichment, we focused on PTEN, known as a negative regulator of the AKT pathway. We demonstrated that USP11 downregulation promoted ubiquitination modification of PTEN and activated the AKT pathway, and PTEN overexpression reversed the effects of USP11 knockdown. CONCLUSIONS Collectively, USP11 knockdown protects R6/1 mouse neurons from oxidative stress by alleviating mitochondrial dysfunction, thereby preventing the HD progression. This is achieved by inhibiting PTEN expression, which in turn activates the AKT pathway. This study suggests that USP11-PTEN-AKT signaling pathway may be a new attractive therapeutic target for HD.
Collapse
Affiliation(s)
- Bai Gao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xi Li
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Zubkova AE, Yudkin DV. Regulation of HTT mRNA Biogenesis: The Norm and Pathology. Int J Mol Sci 2024; 25:11493. [PMID: 39519046 PMCID: PMC11546943 DOI: 10.3390/ijms252111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of the CAG repeat in exon 1 of the HTT gene, leading to the formation of a toxic variant of the huntingtin protein. It is a rare but severe hereditary disease for which no effective treatment method has been found yet. The primary therapeutic targets include the mutant protein and the mutant mRNA of HTT. Current clinical trial approaches in gene therapy involve the application of splice modulation, siRNA, or antisense oligonucleotides for RNA-targeted knockdown of HTT. However, these approaches do not take into account the diversity of HTT transcript isoforms in the normal conditions and in HD. In this review, we discuss the features of transcriptional regulation and processing that lead to the formation of various HTT mRNA variants, each of which may uniquely contribute to the progression of the disease. Furthermore, understanding the role of known transcription factors of HTT in pathology may aid in the development of potentially new therapeutic tools based on endogenous regulators.
Collapse
Affiliation(s)
- Alexandra E. Zubkova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, Moscow 119048, Russia;
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry V. Yudkin
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, Moscow 119048, Russia;
| |
Collapse
|
3
|
Torkamani-Dordshaikh S, Darabi S, Norouzian M, Bahar R, Beirami A, Moghaddam MH, Fathi M, Vakili K, Tahmasebinia F, Bahrami M, Abbaszadeh HA, Aliaghaei A. Exploring the therapeutic potential: Apelin-13's neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington's disease. Anat Cell Biol 2024; 57:419-430. [PMID: 39079710 PMCID: PMC11424562 DOI: 10.5115/acb.23.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 08/06/2024] Open
Abstract
Huntington's disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP. Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group. Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group. Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.
Collapse
Affiliation(s)
- Shaysteh Torkamani-Dordshaikh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Bahar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Beirami
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foozhan Tahmasebinia
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Bahrami
- Rayan Stem Cells and Regenerative Medicine Research Center, Ravan Sazeh Company, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Rayan Stem Cells and Regenerative Medicine Research Center, Ravan Sazeh Company, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ruiz de Sabando A, Ciosi M, Galbete A, Cumming SA, Monckton DG, Ramos-Arroyo MA. Somatic CAG repeat instability in intermediate alleles of the HTT gene and its potential association with a clinical phenotype. Eur J Hum Genet 2024; 32:770-778. [PMID: 38433266 PMCID: PMC11220145 DOI: 10.1038/s41431-024-01546-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 03/05/2024] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by ≥36 CAGs in the HTT gene. Intermediate alleles (IAs) (27-35 CAGs) are not considered HD-causing, but their potential association with neurocognitive symptoms remains controversial. As HTT somatic CAG expansion influences HD onset, we hypothesised that IAs are somatically unstable, and that somatic CAG expansion may drive phenotypic presentation in some IA carriers. We quantified HTT somatic CAG expansions by MiSeq sequencing in the blood DNA of 164 HD subjects and 191 IA (symptomatic and control) carriers, and in the brain DNA of a symptomatic 33 CAG carrier. We also performed genotype-phenotype analysis. The phenotype of symptomatic IA carriers was characterised by motor (85%), cognitive (27%) and/or behavioural (29%) signs, with a late (58.7 ± 18.6 years), but not CAG-dependent, age at onset. IAs displayed somatic expansion that were CAG and age-dependent in blood DNA, with 0.4% and 0.01% of DNA molecules expanding by CAG and year, respectively. Somatic expansions of +1 and +2 CAGs were detected in the brain of the individual with 33 CAGs, with the highest expansion frequency in the putamen (10.3%) and the lowest in the cerebellum (4.8%). Somatic expansion in blood DNA was not different in symptomatic vs. control IA carriers. In conclusion, we show that HTT IAs are somatically unstable, but we found no association with HD-like phenotypes. It is plausible, however, that some IAs, close to the HD pathological threshold and with a predisposing genetic background, could manifest with neurocognitive symptoms.
Collapse
Affiliation(s)
- Ainara Ruiz de Sabando
- Department of Medical Genetics, Hospital Universitario de Navarra, IdiSNA, 31008, Pamplona, Spain
- Department of Health Sciences, Universidad Pública de Navarra, IdiSNA, 31008, Pamplona, Spain
- Fundación Miguel Servet-Navarrabiomed, IdiSNA, 31008, Pamplona, Spain
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Arkaitz Galbete
- Department of Statistics, Informatics and Mathematics, Universidad Pública de Navarra, IdiSNA, 31006, Pamplona, Spain
| | - Sarah A Cumming
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Maria A Ramos-Arroyo
- Department of Medical Genetics, Hospital Universitario de Navarra, IdiSNA, 31008, Pamplona, Spain.
- Fundación Miguel Servet-Navarrabiomed, IdiSNA, 31008, Pamplona, Spain.
| |
Collapse
|
5
|
Khan A, Özçelik CE, Begli O, Oguz O, Kesici MS, Kasırga TS, Özçubukcu S, Yuca E, Seker UOS. Highly Potent Peptide Therapeutics To Prevent Protein Aggregation in Huntington's Disease. ACS Med Chem Lett 2023; 14:1821-1826. [PMID: 38116434 PMCID: PMC10726468 DOI: 10.1021/acsmedchemlett.3c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder resulting from a significant amplification of CAG repeats in exon 1 of the Huntingtin (Htt) gene. More than 36 CAG repeats result in the formation of a mutant Htt (mHtt) protein. These amino-terminal mHtt fragments lead to the formation of misfolded proteins, which then form aggregates in the relevant brain regions. Therapies that can delay the progression of the disease are imperative to halting the course of the disease. Peptide-based drug therapies provide such a platform. Inhibitory peptides were screened against monomeric units of both wild type (Htt(Q25)) and mHtt fragments, Htt(Q46) and Htt(Q103). Fibril kinetics was studied by utilizing the Thioflavin T (ThT) assay. Atomic force microscopy was also used to study the influence of the peptides on fibril formation. These experiments demonstrate that the chosen peptides suppress the formation of fibrils in mHtt proteins and can provide a therapeutic lead for further optimization and development.
Collapse
Affiliation(s)
- Anooshay Khan
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- Department
of Neurosciences, Bilkent University, 06800 Ankara, Turkey
| | - Cemile Elif Özçelik
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Ozge Begli
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Oguzhan Oguz
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Mehmet Seçkin Kesici
- Department
of Chemistry, Faculty of Science, Middle
East Technical University, Ankara 06800, Turkey
| | - Talip Serkan Kasırga
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Salih Özçubukcu
- Department
of Chemistry, Faculty of Science, Middle
East Technical University, Ankara 06800, Turkey
| | - Esra Yuca
- Department
of Molecular Biology and Genetics, Yildiz
Technical University, Istanbul 34349, Turkey
- Health
Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul 34220, Turkey
| | - Urartu Ozgur Safak Seker
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- Department
of Neurosciences, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
6
|
Fan S, Nie L, Zhang Y, Ustyantseva E, Woudstra W, Kampinga HH, Schirhagl R. Diamond Quantum Sensing Revealing the Relation between Free Radicals and Huntington's Disease. ACS CENTRAL SCIENCE 2023; 9:1427-1436. [PMID: 37521781 PMCID: PMC10375573 DOI: 10.1021/acscentsci.3c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/01/2023]
Abstract
Huntington's disease (HD) is a well-studied yet rare disease caused by a specific mutation that results in the expression of polyglutamine (PolyQ). The formation of aggregates of PolyQ leads to disease and increases the level of free radicals. However, it is unclear where free radicals are generated and how they impact cells. To address this, a new method called relaxometry was used to perform nanoscale MRI measurements with a subcellular resolution. The method uses a defect in fluorescent nanodiamond (FND) that changes its optical properties based on its magnetic surroundings, allowing for sensitive detection of free radicals. To investigate if radical generation occurs near PolyQ aggregates, stable tetracycline (tet)-inducible HDQ119-EGFP-expressing human embryonic kidney cells (HEK PQ) were used to induce the PolyQ formation and Huntington aggregation. The study found that NDs are highly colocalized with PolyQ aggregates at autolysosomes, and as the amount of PolyQ aggregation increased, so did the production of free radicals, indicating a relationship between PolyQ aggregation and autolysosome dysfunction.
Collapse
Affiliation(s)
- S. Fan
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - L. Nie
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - Y. Zhang
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - E. Ustyantseva
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - W. Woudstra
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - H. H. Kampinga
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - R. Schirhagl
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| |
Collapse
|
7
|
Bao YF, Li XY, Dong Y, Wu ZY. Loss of CAA interruption and intergenerational CAG instability in Chinese patients with Huntington's disease. J Mol Med (Berl) 2023; 101:869-876. [PMID: 37231148 DOI: 10.1007/s00109-023-02329-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG expansions in huntingtin (HTT) gene, involving motor, cognitive, and neuropsychiatric symptoms. However, genetic modifiers and CAG repeat instability may lead to variations of clinical manifestations, making diagnosis of HD difficult. In this study, we recruited 229 HD individuals from 164 families carrying expanded CAG repeats of HTT, and analyzed loss of CAA interruption (LOI) on the expanded allele and CAG instability during germline transmission. Sanger sequencing and TA cloning were used to determine CAG repeat length and identify LOI variants. Detailed clinical features and genetic testing results were collected. We identified 6 individuals with LOI variants from 3 families, and all probands presented with earlier motor onset age than predicted onset age. In addition, we also presented 2 families with extreme CAG instability during germline transmission. One family showed an expansion from 35 to 66 CAG repeats, while the other family showed both CAG expansion and contraction in lineal three generations. In conclusion, we present the first document of Asian HD population with LOI variant, and we suggest that for symptomatic individuals with intermediate or reduced penetrance allele or negative family history, HTT gene sequencing should be considered in the clinical practice. KEY MESSAGES : We screened the loss of CAA interruption (LOI) variant in a Chinese HD cohort and presented the first document of Asian patients with Huntington's disease carrying LOI variant. We identified 6 individuals with LOI variants from 3 families, and all probands presented with earlier motor onset age than predicted onset age. We presented 2 families with extreme CAG instability during germline transmission. One family showed an expansion from 35 to 66 CAG repeats, while the other family showed both CAG expansion and contraction in lineal three generations. We suggest that for symptomatic individuals with intermediate or reduced penetrance allele or negative family history, HTT gene sequencing should be considered in the clinical practice.
Collapse
Affiliation(s)
- Yu-Feng Bao
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Xiao-Yan Li
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
8
|
Saha S, Dey MJ, Promon SK, Araf Y. Pathogenesis and potential therapeutic application of stem cells transplantation in Huntington’s disease. Regen Ther 2022; 21:406-412. [PMID: 36196447 PMCID: PMC9513215 DOI: 10.1016/j.reth.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder which is caused due to repetitive CAG or glutamine expression along the coding region of the Huntington gene. This disease results in certain movement abnormalities, affective disturbances, dementia and cognitive impairments. To this date, there is no proper cure for this rare and fatal neurological condition but there have been certain advancements in the field of genetic animal model research studies to elucidate the understanding of the pathogenesis of this condition. Currently, HD follows a certain therapeutic approach which just relieves the symptoms but doesn't cure the underlying cause of the disease. Stem cell therapy can be a breakthrough in developing a potential cure for this condition. In this review, we have discussed the pathogenesis and the efficacy and clinical practicality of the therapeutic application of stem cell transplantation in Huntington's disease. The application of this groundbreaking therapy on genetically altered animal models has been listed and analyzed in brief.
Collapse
|
9
|
Chia K, Klingseisen A, Sieger D, Priller J. Zebrafish as a model organism for neurodegenerative disease. Front Mol Neurosci 2022; 15:940484. [PMID: 36311026 PMCID: PMC9606821 DOI: 10.3389/fnmol.2022.940484] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The zebrafish is increasingly recognized as a model organism for translational research into human neuropathology. The zebrafish brain exhibits fundamental resemblance with human neuroanatomical and neurochemical pathways, and hallmarks of human brain pathology such as protein aggregation, neuronal degeneration and activation of glial cells, for example, can be modeled and recapitulated in the fish central nervous system. Genetic manipulation, imaging, and drug screening are areas where zebrafish excel with the ease of introducing mutations and transgenes, the expression of fluorescent markers that can be detected in vivo in the transparent larval stages overtime, and simple treatment of large numbers of fish larvae at once followed by automated screening and imaging. In this review, we summarize how zebrafish have successfully been employed to model human neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. We discuss advantages and disadvantages of choosing zebrafish as a model for these neurodegenerative conditions.
Collapse
Affiliation(s)
- Kelda Chia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Klingseisen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
| | - Dirk Sieger
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Dirk Sieger,
| | - Josef Priller
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, DZNE, Berlin, Germany
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Josef Priller,
| |
Collapse
|
10
|
Cui M, Yoshimori T, Nakamura S. Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochem Int 2022; 155:105308. [PMID: 35181396 DOI: 10.1016/j.neuint.2022.105308] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 02/13/2022] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionally conserved process by which cytoplasmic contents including protein aggregates and damaged organelles such as mitochondria and lysosomes, are sequestered by double-membrane structure, autophagosomes, and delivered to the lysosomes for degradation. Recently, considerable efforts have been made to reveal the role of autophagy in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Huntington's disease. Impairment of autophagy aggravates the accumulation of misfolded protein and damaged organelles in neurons, while sufficient autophagic activity reduces such accumulation in nervous system and ameliorates the pathology. Here we summarize recent progress regarding the role of autophagy in several neurodegenerative diseases and the potential autophagy-associated therapies for them.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan.
| |
Collapse
|
11
|
Nikitina M, Bragina E, Nazarenko M, Alifirova V. The role of alleles with an intermediate number of trinucleotide repeats in Parkinson’s disease and other neurodegenerative disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:42-50. [DOI: 10.17116/jnevro202212207142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Love CJ, Masson BA, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:141-184. [DOI: 10.1016/bs.irn.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Abstract
At fifteen different genomic locations, the expansion of a CAG/CTG repeat causes a neurodegenerative or neuromuscular disease, the most common being Huntington's disease and myotonic dystrophy type 1. These disorders are characterized by germline and somatic instability of the causative CAG/CTG repeat mutations. Repeat lengthening, or expansion, in the germline leads to an earlier age of onset or more severe symptoms in the next generation. In somatic cells, repeat expansion is thought to precipitate the rate of disease. The mechanisms underlying repeat instability are not well understood. Here we review the mammalian model systems that have been used to study CAG/CTG repeat instability, and the modifiers identified in these systems. Mouse models have demonstrated prominent roles for proteins in the mismatch repair pathway as critical drivers of CAG/CTG instability, which is also suggested by recent genome-wide association studies in humans. We draw attention to a network of connections between modifiers identified across several systems that might indicate pathway crosstalk in the context of repeat instability, and which could provide hypotheses for further validation or discovery. Overall, the data indicate that repeat dynamics might be modulated by altering the levels of DNA metabolic proteins, their regulation, their interaction with chromatin, or by direct perturbation of the repeat tract. Applying novel methodologies and technologies to this exciting area of research will be needed to gain deeper mechanistic insight that can be harnessed for therapies aimed at preventing repeat expansion or promoting repeat contraction.
Collapse
Affiliation(s)
- Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| |
Collapse
|
14
|
Kim A, Lalonde K, Truesdell A, Gomes Welter P, Brocardo PS, Rosenstock TR, Gil-Mohapel J. New Avenues for the Treatment of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22168363. [PMID: 34445070 PMCID: PMC8394361 DOI: 10.3390/ijms22168363] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HD gene. The disease is characterized by neurodegeneration, particularly in the striatum and cortex. The first symptoms usually appear in mid-life and include cognitive deficits and motor disturbances that progress over time. Despite being a genetic disorder with a known cause, several mechanisms are thought to contribute to neurodegeneration in HD, and numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. Although current clinical trials may lead to the identification or refinement of treatments that are likely to improve the quality of life of those living with HD, major efforts continue to be invested at the pre-clinical level, with numerous studies testing novel approaches that show promise as disease-modifying strategies. This review offers a detailed overview of the currently approved treatment options for HD and the clinical trials for this neurodegenerative disorder that are underway and concludes by discussing potential disease-modifying treatments that have shown promise in pre-clinical studies, including increasing neurotropic support, modulating autophagy, epigenetic and genetic manipulations, and the use of nanocarriers and stem cells.
Collapse
Affiliation(s)
- Amy Kim
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Kathryn Lalonde
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Aaron Truesdell
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Priscilla Gomes Welter
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Tatiana R. Rosenstock
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Department of Pharmacology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Joana Gil-Mohapel
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Correspondence: ; Tel.: +1-250-472-4597; Fax: +1-250-472-5505
| |
Collapse
|
15
|
Stoker TB, Holden ST, Barker RA. Late-onset Huntington's disease associated with CAG repeat lengths of 30 and 31. J Neurol 2021; 268:3916-3919. [PMID: 34142177 DOI: 10.1007/s00415-021-10633-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Thomas B Stoker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Simon T Holden
- Department of Clinical Genetics, East Anglian Medical Genetics Service, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.,Wellcome Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Chintalaphani SR, Pineda SS, Deveson IW, Kumar KR. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol Commun 2021; 9:98. [PMID: 34034831 PMCID: PMC8145836 DOI: 10.1186/s40478-021-01201-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Short tandem repeat (STR) expansion disorders are an important cause of human neurological disease. They have an established role in more than 40 different phenotypes including the myotonic dystrophies, Fragile X syndrome, Huntington's disease, the hereditary cerebellar ataxias, amyotrophic lateral sclerosis and frontotemporal dementia. MAIN BODY STR expansions are difficult to detect and may explain unsolved diseases, as highlighted by recent findings including: the discovery of a biallelic intronic 'AAGGG' repeat in RFC1 as the cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS); and the finding of 'CGG' repeat expansions in NOTCH2NLC as the cause of neuronal intranuclear inclusion disease and a range of clinical phenotypes. However, established laboratory techniques for diagnosis of repeat expansions (repeat-primed PCR and Southern blot) are cumbersome, low-throughput and poorly suited to parallel analysis of multiple gene regions. While next generation sequencing (NGS) has been increasingly used, established short-read NGS platforms (e.g., Illumina) are unable to genotype large and/or complex repeat expansions. Long-read sequencing platforms recently developed by Oxford Nanopore Technology and Pacific Biosciences promise to overcome these limitations to deliver enhanced diagnosis of repeat expansion disorders in a rapid and cost-effective fashion. CONCLUSION We anticipate that long-read sequencing will rapidly transform the detection of short tandem repeat expansion disorders for both clinical diagnosis and gene discovery.
Collapse
Affiliation(s)
- Sanjog R. Chintalaphani
- School of Medicine, University of New South Wales, Sydney, 2052 Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Sandy S. Pineda
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050 Australia
| | - Ira W. Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010 Australia
| | - Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Molecular Medicine Laboratory and Neurology Department, Central Clinical School, Concord Repatriation General Hospital, University of Sydney, Concord, NSW 2137 Australia
| |
Collapse
|
17
|
Siafaka PI, Özcan Bülbül E, Dilsiz P, Karantas ID, Okur ME, Üstündağ Okur N. Detecting and targeting neurodegenerative disorders using electrospun nanofibrous matrices: current status and applications. J Drug Target 2021; 29:476-490. [PMID: 33269637 DOI: 10.1080/1061186x.2020.1859516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegeneration is defined as the progressive atrophy and loss of function of neurons; it is present in neurodegenerative disorders such as Multiple Sclerosis, Alzheimer's, Huntington's, and Parkinson's diseases. The detection of such disorders is performed by various imaging modalities while their therapeutic management is quite challenging. Besides, the pathogenesis of neurodegenerative disorders is still under ongoing research due to complex and multi-factorial mechanisms. Currently, targeting the specific proteins responsible for neurodegeneration is of great interest to many researchers. Furthermore, nanotechnology-based approaches for targeting the affected neurons became an emerging field of interest. Nanostructures of various forms have been developed aiming to act as therapeutics for neurodegeneration, in which electrospun nanofibers seem to play an important role as biomedical products for both detection and management of the diseases. Electrospinning is an intriguing method able to produce nanofibers with a wide range of sizes and morphological characteristics. Such nanofibrous matrices can be delivered through different administration routes to target various diseases. In this review, the most recent advancements in electrospun nanofibrous systems that target or detect multiple neurodegenerative diseases have been enlightened and an introduction to the general aspects of neurodegenerative diseases and the electrospinning process has been made. Finally, future perspectives of neurodegeneration targeting were also discussed.
Collapse
Affiliation(s)
- Panoraia I Siafaka
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ece Özcan Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Pelin Dilsiz
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey.,Faculty of Pharmacy, Altınbaş University, Istanbul, Turkey
| | | | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
18
|
Sienes Bailo P, Lahoz R, Sánchez Marín JP, Izquierdo Álvarez S. Incidence of Huntington disease in a northeastern Spanish region: a 13-year retrospective study at tertiary care centre. BMC MEDICAL GENETICS 2020; 21:233. [PMID: 33228555 PMCID: PMC7684714 DOI: 10.1186/s12881-020-01174-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Abstract
Background Despite the progress in the knowledge of Huntington disease (HD) in recent years, the epidemiology continues uncertain, so the study of incidence becomes relevant. This is important since various factors (type of population, diagnostic criteria, disease-modifying factors, etc.) make these data highly variable. Therefore, the genetic diagnosis of these patients is important, since it unequivocally allows the detection of new cases. Methods Descriptive retrospective study with 179 individuals. Incidence of HD was calculated from the ratio of number of symptomatic cases newly diagnosed per 100,000 inhabitants per year during the period 2007–2019 in Aragon (Spain). Results 50 (27.9%) incident cases of HD (CAG repeat length ≥ 36) were identified from a total of 179 persons studied. The remaining 129/179 (72.1%) were HD negative (CAG repeat length < 36). 29 (58.0%) females and 21 (42.0%) males were confirmed as HD cases. The overall incidence was 0.648 per 100,000 patient-years. 11/50 positive HD cases (22.0%) were identified by performing a predictive test, without clinical symptoms. The minimum number of CAG repeats found was 9 and the most common CAG length among HD negative individuals was 16. Conclusions Our incidence lied within the range reported for other Caucasian populations. Implementation of new techniques has allowed to determine the exact number of CAG repeats, which is especially important in patients with triplet expansions in an HD intermediate and/or incomplete penetrance allele, both in diagnostic, predictive and prenatal tests. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01174-z.
Collapse
Affiliation(s)
- Paula Sienes Bailo
- Departamento de Genética. Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet. C/ Padre Arrupe, s/n. Consultas Externas. Planta 3ª. 50009, Zaragoza, Spain
| | - Raquel Lahoz
- Departamento de Genética. Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet. C/ Padre Arrupe, s/n. Consultas Externas. Planta 3ª. 50009, Zaragoza, Spain.
| | - Juan Pelegrín Sánchez Marín
- Departamento de Genética. Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet. C/ Padre Arrupe, s/n. Consultas Externas. Planta 3ª. 50009, Zaragoza, Spain
| | - Silvia Izquierdo Álvarez
- Departamento de Genética. Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet. C/ Padre Arrupe, s/n. Consultas Externas. Planta 3ª. 50009, Zaragoza, Spain
| |
Collapse
|
19
|
New developments in Huntington's disease and other triplet repeat diseases: DNA repair turns to the dark side. Neuronal Signal 2020; 4:NS20200010. [PMID: 33224521 PMCID: PMC7672267 DOI: 10.1042/ns20200010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Huntington’s disease (HD) is a fatal, inherited neurodegenerative disease that causes neuronal death, particularly in medium spiny neurons. HD leads to serious and progressive motor, cognitive and psychiatric symptoms. Its genetic basis is an expansion of the CAG triplet repeat in the HTT gene, leading to extra glutamines in the huntingtin protein. HD is one of nine genetic diseases in this polyglutamine (polyQ) category, that also includes a number of inherited spinocerebellar ataxias (SCAs). Traditionally it has been assumed that HD age of onset and disease progression were solely the outcome of age-dependent exposure of neurons to toxic effects of the inherited mutant huntingtin protein. However, recent genome-wide association studies (GWAS) have revealed significant effects of genetic variants outside of HTT. Surprisingly, these variants turn out to be mostly in genes encoding DNA repair factors, suggesting that at least some disease modulation occurs at the level of the HTT DNA itself. These DNA repair proteins are known from model systems to promote ongoing somatic CAG repeat expansions in tissues affected by HD. Thus, for triplet repeats, some DNA repair proteins seem to abandon their normal genoprotective roles and, instead, drive expansions and accelerate disease. One attractive hypothesis—still to be proven rigorously—is that somatic HTT expansions augment the disease burden of the inherited allele. If so, therapeutic approaches that lower levels of huntingtin protein may need blending with additional therapies that reduce levels of somatic CAG repeat expansions to achieve maximal effect.
Collapse
|
20
|
Distribution of the CAG Triplet Repeat in ATXN1, ATXN3, and CACNA1A Loci in Peruvian Population. THE CEREBELLUM 2020; 19:527-535. [PMID: 32285347 DOI: 10.1007/s12311-020-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Spinocerebellar ataxia subtypes 1, 3, and 6 (SCA1, MJD/SCA3, and SCA6) are among the most prevalent autosomal dominant cerebellar ataxias worldwide, but their relative frequencies in Peru are low. Frequency of large normal (LN) alleles at spinocerebellar ataxia-causative genes has been proposed to be associated with disease prevalence. To investigate the allelic distribution of the CAG repeat in ATXN1, ATXN3, and CACNA1A genes in a Peruvian mestizo population and examine their association with the relative frequency of SCA1, MJD/SCA3, and SCA6 across populations. We genotyped 213 healthy mestizo individuals from Northern Lima, Peru, for ATXN1, ATXN3, and CACNA1A using polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis (PAGE). We compared the frequency of LN alleles and relative disease frequency between populations. We also tested 40 samples for CAT repeat interruptions within the CAG tract of ATXN1. We found no association between disease frequency and population frequency of LN alleles at ATXN1 and ATXN3. All 40 ATXN1 samples tested for CAT interruptions were positive. Frequency of LN alleles at CACNA1A correlates with SCA6 frequency across several populations, but this effect was largely driven by data from a single population. Low frequency of SCA1 and MJD/SCA3 in Peru is not explained by frequency of LN alleles at ATXN1 and ATXN3, respectively. The observed correlation between CACNA1A LN alleles and SCA6 frequency requires further assessment.
Collapse
|
21
|
Apolinário TA, da Silva IDS, Agostinho LDA, Paiva CLA. Investigation of intermediate CAG alleles of the HTT in the general population of Rio de Janeiro, Brazil, in comparison with a sample of Huntington disease-affected families. Mol Genet Genomic Med 2020; 8:e1181. [PMID: 32067426 PMCID: PMC7196456 DOI: 10.1002/mgg3.1181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Huntington disease (HD) (MIM: 143100) is a severe autosomal dominant neurodegenerative disease caused by the expansion of CAG trinucleotides (>35) in the HTT. OBJECTIVE To investigate the frequency of intermediate CAG alleles (IAs) in individuals residing in Rio de Janeiro city with no familial history of HD (general population, GP) in comparison with a sample of individuals from families presenting with HD who were previously investigated by our group (affected sample, AS). RESULTS The frequency of normal CAG alleles was 96.2%, while that of IAs was 3.6%, and that of reduced penetrance alleles was 0.2% in the GP (n = 470 chromosomes); 7.2% (17/235 individuals) of the GP presented an IA in heterozygosis with a normal allele. There was no statistically significant difference between the frequencies of the IAs in the GP and in the AS (p = .9). The most frequent haplotype per normal allele was (CAG)17-(CCG)7 (101/461) and per IA was (CAG)27-(CCG)7 (6/17) in the GP. These haplotypes were also the most frequent in the normal and IA chromosomes of the AS, respectively. CONCLUSION The genetic profiles of the IAs obtained from GP and AS were rather similar. It is important to investigate the frequencies of the IAs because expansions arise from a step-by-step mechanism in which, during intergenerational transmission, large normal alleles can generate IAs, which are then responsible for generating de novo HD mutations. The genetic investigation of IAs in the GP was also important because it was focused on the population of Rio de Janeiro, an understudied group. CCG7 was the most frequent CCG allele in linkage disequilibrium with normal, intermediate, and expanded CAG alleles, similar to the Western Europe population. However, a more robust investigation, in conjunction with haplogroup determination (A, B, or C), will be required to elucidate the ancestral origin of the HTT mutations in Brazilians.
Collapse
Affiliation(s)
- Thays A. Apolinário
- Programa de Pós‐Graduação em NeurologiaUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroRJBrazil
| | - Iane dos Santos da Silva
- Programa de Pós‐Graduação em Biologia Molecular e CelularUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroRJBrazil
| | - Luciana de Andrade Agostinho
- Programa de Pós‐Graduação em NeurologiaUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroRJBrazil
- Centro Universitário FAMINAS – UNIFAMINASMuriaéMGBrazil
- Fundação Cristiano Varella‐Hospital do CâncerMuriaéMGBrazil
| | - Carmen L. A. Paiva
- Programa de Pós‐Graduação em NeurologiaUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroRJBrazil
- Programa de Pós‐Graduação em Biologia Molecular e CelularUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroRJBrazil
| |
Collapse
|
22
|
Tibben A, Dondorp WJ, de Wert GM, de Die-Smulders CE, Losekoot M, Bijlsma EK. Risk Assessment for Huntington's Disease for (Future) Offspring Requires Offering Preconceptional CAG Analysis to Both Partners. J Huntingtons Dis 2020; 8:71-78. [PMID: 30689590 DOI: 10.3233/jhd-180314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amongst the main reasons people at risk for Huntington's disease (HD) have for undergoing predictive genetic testing are planning a family and prevention of passing on an expanded CAG-repeat to future offspring. After having received an unfavourable test result, a couple may consider prenatal testing in the foetus or preimplantation genetic diagnostic testing (PGD) in embryos. Testing of the foetus or embryos is possible by means of direct testing of the expanded repeat. Optimal reliability in testing the foetus or embryos requires the establishment of the origin of the repeats of both parents in the foetus. For PGD the analysis is combined with or sometimes solely based on identification of the at-risk haplotype in the embryo. This policy implies that in the context of direct testing, the healthy partner's CAG repeat lengths in the HD gene are also tested, but with the expectation that the repeat lengths of the partner are within the normal range, with the proviso that the partner's pedigree is free of clinically confirmed HD. However, recent studies have shown that the expanded repeat has been observed more often in the general population than previously estimated. Moreover, we have unexpectedly observed an expanded repeat in the non-HD partner in four cases which had far-reaching consequences. Hence, we propose that in the context of reproductive genetic counselling, prior to a planned pregnancy, and irrespective of the outcome of the predictive test in the HD-partner, the non-HD partner should also be given the option of being tested on the expanded allele. International recommendations for predictive testing for HD should be adjusted.
Collapse
Affiliation(s)
- Aad Tibben
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wybo J Dondorp
- Department of Health, Ethics and Society, Maastricht University, Maastricht, The Netherlands
| | - Guido M de Wert
- Department of Health, Ethics and Society, Maastricht University, Maastricht, The Netherlands
| | | | - Moniek Losekoot
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Gardiner SL, Boogaard MW, Trompet S, de Mutsert R, Rosendaal FR, Gussekloo J, Jukema JW, Roos RAC, Aziz NA. Prevalence of Carriers of Intermediate and Pathological Polyglutamine Disease-Associated Alleles Among Large Population-Based Cohorts. JAMA Neurol 2020; 76:650-656. [PMID: 30933216 DOI: 10.1001/jamaneurol.2019.0423] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Nine hereditary neurodegenerative diseases are known as polyglutamine diseases, including Huntington disease, 6 spinocerebellar ataxias (SCAs) (SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17), dentatorubral-pallidoluysion atrophy, and spinal bulbar muscular atrophy. Objective To determine the prevalence of carriers of intermediate and pathological polyglutamine disease-associated alleles among the general population. Design, Setting, and Participants This observational cross-sectional study included data from 5 large European population-based cohorts that were compiled between 1997 and 2012, and the analyses were conducted in 2018. In total, 16 547 DNA samples were obtained from participants of the 5 cohorts. Individuals with a lifetime diagnosis of major depression were excluded (n = 2351). In the remaining 14 196 participants without an established polyglutamine disease diagnosis, the CAG repeat size in both alleles of all 9 polyglutamine disease-associated genes (PDAGs) (ie, ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP, HTT, ATN1, and AR) was determined. Exposure The number of CAG repeats in the alleles of the 9 PDAGs. Main Outcomes and Measures The number of individuals with alleles within the intermediate or pathological range per PDAG, as well as differences in sex, age, and body mass index between individuals carrying alleles within the normal or intermediate range and individuals carrying alleles within the pathological range of PDAGs. Results In the 14 196 analyzed participants (age range, 18-99 years; 56.3% female), 10.7% had a CAG repeat number within the intermediate range of at least 1 PDAG. Moreover, up to 1.3% of the participants had a CAG repeat number within the disease-causing range, predominantly in the lower pathological range associated with elderly onset. No differences in sex, age, or body mass index were found between individuals with CAG repeat numbers within the pathological range and individuals with CAG repeat numbers within the normal or intermediate range. Conclusions and Relevance These results indicate a high prevalence of individuals carrying intermediate and pathological ranges of polyglutamine disease-associated alleles among the general population. Therefore, a substantially larger proportion of individuals than previously estimated may be at risk of developing a polyglutamine disease later in life or bearing children with a de novo mutation.
Collapse
Affiliation(s)
- Sarah L Gardiner
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Merel W Boogaard
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Stella Trompet
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jacobijn Gussekloo
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Public Health and Primary Care, Leiden University Medical Centre, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - N Ahmad Aziz
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
24
|
Ramond F, Quadrio I, Le Vavasseur L, Chaumet H, Boyer F, Bost M, Ollagnon-Roman E. Predictive testing for Huntington disease over 24 years: Evolution of the profile of the participants and analysis of symptoms. Mol Genet Genomic Med 2019; 7:e00881. [PMID: 31436908 PMCID: PMC6785454 DOI: 10.1002/mgg3.881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Huntington disease (HD) is a devastating neurodegenerative autosomal dominant genetic condition. Predictive testing (PT) is available through a defined protocol for at-risk individuals. We analyzed the over-24-years evolution of practices regarding PT for HD in a single center. METHODS We gathered data from the files of all individuals seeking PT for HD in Lyon, France, from 1994 to 2017. RESULTS 448 out of 567 participants had exploitable data. Age at consultation dichotomized over 24 years toward an eightfold increase in individuals aged >55 (2/94 vs. 30/183; 2% to 16%; p < .0001) and twice as many individuals aged 18-20 (3/94 vs. 12/183; 3%-7%; p < .05). Motives for testing remained stable. The rate of withdrawal doubled over 24 years (9/94 vs. 38/183; 9%-21%; p < .02). Independently of the time period, less withdrawal was observed for married, accompanied, at 50% risk, and symptomatic individuals, and in those able to explicit the motives for testing or taking the test to inform their children. We also assessed the consistency between the presence of subtle symptoms compatible with HD found before the test by the team's neurologist, and the positivity of the molecular test. The concordance was 100% (17/17) for associated motor and cognitive signs, 87% (27/31) for isolated motor signs, and 70% (7/10) for isolated cognitive signs. Furthermore, 91% (20/22) of individuals who requested testing because they thought they had symptoms, were indeed found carriers. CONCLUSION This over-24 years study underlines an increasing withdrawal from protocol and a dichotomization of participants' age. We also show a strong concordance between symptoms perceived by the neurologist or by the patient, and the subsequent positivity of the predictive molecular test.
Collapse
Affiliation(s)
- Francis Ramond
- Service de neurogénétique et médecine prédictive, GH Nord-Hôpital de la Croix Rousse, Hospices civils de Lyon, Lyon, France.,Service de Génétique, CHU-Hôpital Nord, Saint-Etienne, France
| | - Isabelle Quadrio
- Unité des Pathologies Neurogénétiques Héréditaires - Service de biochimie et biologie moléculaire Grand Est, CBPE, Hospices Civils de Lyon, Lyon, France.,BIORAN Team, CNRS UMR 5292, INSERM U1028, Lyon Neuroscience Research Center, Lyon 1 University, Bron, France
| | - Laurence Le Vavasseur
- Service de neurogénétique et médecine prédictive, GH Nord-Hôpital de la Croix Rousse, Hospices civils de Lyon, Lyon, France
| | - Hélène Chaumet
- Service de neurogénétique et médecine prédictive, GH Nord-Hôpital de la Croix Rousse, Hospices civils de Lyon, Lyon, France
| | - Fabrice Boyer
- Service de neurogénétique et médecine prédictive, GH Nord-Hôpital de la Croix Rousse, Hospices civils de Lyon, Lyon, France
| | - Muriel Bost
- Unité des Pathologies Neurogénétiques Héréditaires - Service de biochimie et biologie moléculaire Grand Est, CBPE, Hospices Civils de Lyon, Lyon, France
| | - Elisabeth Ollagnon-Roman
- Service de neurogénétique et médecine prédictive, GH Nord-Hôpital de la Croix Rousse, Hospices civils de Lyon, Lyon, France
| |
Collapse
|
25
|
Véliz-Otani D, Inca-Martinez M, Bampi GB, Ortega O, Jardim LB, Saraiva-Pereira ML, Mazzetti P, Cornejo-Olivas M. ATXN10 Microsatellite Distribution in a Peruvian Amerindian Population. THE CEREBELLUM 2019; 18:841-848. [DOI: 10.1007/s12311-019-01057-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Quarrell OW, Delatycki MB, Clarke AJ, Lahiri N, Craufurd D, Miedzybrodzka Z, MacLeod R, Renwick P, Tomlinson C. Letter in Response to Tibben et al., Risk Assessment for Huntington's Disease for (Future) Offspring Requires Offering Preconceptional CAG Analysis to Both Partners. J Huntingtons Dis 2019; 8:357-359. [PMID: 31282428 DOI: 10.3233/jhd-190360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Oliver W Quarrell
- Department of Clinical Genetics, Sheffield Children's NHS Trust, OPD II Northern General Hospital, Sheffield, UK
| | - Martin B Delatycki
- Victorian Clinical Genetic Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville VIC, Australia
| | - Angus J Clarke
- Institute of Cancer and Genetics, University of Cardiff, Cardiff, UK
| | - Nayana Lahiri
- Clinical Genetics Department, St George's University of London, London, UK and St George's University Hospitals NHS Foundation Trust, London, UK
| | - David Craufurd
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomics Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK. and St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Zosia Miedzybrodzka
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.,North of Scotland Regional Genetics Service, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Rhona MacLeod
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomics Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK. and St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Pamela Renwick
- Center for Preimplantation Genetic Diagnosis, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London, UK
| | | |
Collapse
|
27
|
Savitt D, Jankovic J. Clinical phenotype in carriers of intermediate alleles in the huntingtin gene. J Neurol Sci 2019; 402:57-61. [DOI: 10.1016/j.jns.2019.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/17/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
|
28
|
Wright GEB, Collins JA, Kay C, McDonald C, Dolzhenko E, Xia Q, Bečanović K, Drögemöller BI, Semaka A, Nguyen CM, Trost B, Richards F, Bijlsma EK, Squitieri F, Ross CJD, Scherer SW, Eberle MA, Yuen RKC, Hayden MR. Length of Uninterrupted CAG, Independent of Polyglutamine Size, Results in Increased Somatic Instability, Hastening Onset of Huntington Disease. Am J Hum Genet 2019; 104:1116-1126. [PMID: 31104771 DOI: 10.1016/j.ajhg.2019.04.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/10/2019] [Indexed: 01/28/2023] Open
Abstract
Huntington disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. Although the length of this repeat is inversely correlated with age of onset (AOO), it does not fully explain the variability in AOO. We assessed the sequence downstream of the CAG repeat in HTT [reference: (CAG)n-CAA-CAG], since variants within this region have been previously described, but no study of AOO has been performed. These analyses identified a variant that results in complete loss of interrupting (LOI) adenine nucleotides in this region [(CAG)n-CAG-CAG]. Analysis of multiple HD pedigrees showed that this LOI variant is associated with dramatically earlier AOO (average of 25 years) despite the same polyglutamine length as in individuals with the interrupting penultimate CAA codon. This LOI allele is particularly frequent in persons with reduced penetrance alleles who manifest with HD and increases the likelihood of presenting clinically with HD with a CAG of 36-39 repeats. Further, we show that the LOI variant is associated with increased somatic repeat instability, highlighting this as a significant driver of this effect. These findings indicate that the number of uninterrupted CAG repeats, which is lengthened by the LOI, is the most significant contributor to AOO of HD and is more significant than polyglutamine length, which is not altered in these individuals. In addition, we identified another variant in this region, where the CAA-CAG sequence is duplicated, which was associated with later AOO. Identification of these cis-acting modifiers have potentially important implications for genetic counselling in HD-affected families.
Collapse
Affiliation(s)
- Galen E B Wright
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jennifer A Collins
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Chris Kay
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Cassandra McDonald
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | | | - Qingwen Xia
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Kristina Bečanović
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Britt I Drögemöller
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alicia Semaka
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Charlotte M Nguyen
- The Hospital For Sick Children, The Centre for Applied Genomics, Genetics and Genome Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Hospital For Sick Children, The Centre for Applied Genomics, Genetics and Genome Biology, Toronto, ON M5G 0A4, Canada
| | - Fiona Richards
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333, the Netherlands
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy
| | - Colin J D Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stephen W Scherer
- The Hospital For Sick Children, The Centre for Applied Genomics, Genetics and Genome Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5G 0A4, Canada; McLaughlin Centre, University of Toronto, Toronto, ON M5G 0A4, Canada
| | | | - Ryan K C Yuen
- The Hospital For Sick Children, The Centre for Applied Genomics, Genetics and Genome Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5G 0A4, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
29
|
Migliore S, Jankovic J, Squitieri F. Genetic Counseling in Huntington's Disease: Potential New Challenges on Horizon? Front Neurol 2019; 10:453. [PMID: 31114543 PMCID: PMC6503085 DOI: 10.3389/fneur.2019.00453] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/15/2019] [Indexed: 01/08/2023] Open
Abstract
Huntington's disease (HD) is a rare, hereditary, neurodegenerative and dominantly transmitted disorder affecting about 10 out of 100,000 people in Western Countries. The genetic cause is a CAG repeat expansion in the huntingtin gene (HTT), which is unstable and may further increase its length in subsequent generations, so called anticipation. Mutation repeat length coupled with other gene modifiers and environmental factors contribute to the age at onset in the offspring. Considering the unpredictability of age at onset and of clinical prognosis in HD, the accurate interpretation, a proper psychological support and a scientifically sound and compassionate communication of the genetic test result are crucial in the context of Good Clinical Practice and when considering further potential disease-modifying therapies. We discuss various genetic test scenarios that require a particularly careful attention in psychological and genetic counseling and expect that the counseling procedures will require a constant update.
Collapse
Affiliation(s)
- Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Joseph Jankovic
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, TX, United States
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| |
Collapse
|
30
|
Ylönen S, Sipilä JOT, Hietala M, Majamaa K. HTT haplogroups in Finnish patients with Huntington disease. NEUROLOGY-GENETICS 2019; 5:e334. [PMID: 31086827 PMCID: PMC6481225 DOI: 10.1212/nxg.0000000000000334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
Objective To study genetic causes of the low frequency of Huntington disease (HD) in the Finnish population, we determined HTT haplogroups in the population and patients with HD and analyzed intergenerational Cytosine-Adenosine-Guanosine (CAG) stability. Methods A national cohort of patients with HD was used to identify families with mutant HTT (mHTT). HTT haplogroups were determined in 225 archival samples from patients and from 292 population samples. CAG repeats were phased with HTT haplotypes using data from parent-offspring pairs and other mHTT carriers in the family. Results The allele frequencies of HTT haplotypes in the Finnish population differed from those in 411 non-Finnish European subjects (p < 0.00001). The frequency of haplogroup A was lower than that in Europeans and haplogroup C was higher. Haplogroup A alleles were significantly more common in patients than in controls. Among patients with HD haplotypes A1 and A2 were more frequent than among the controls (p = 0.003). The mean size of the CAG repeat change was +1.38 units in paternal transmissions being larger than that (−0.17) in maternal transmissions (p = 0.008). CAG repeats on haplogroup A increased by 3.18 CAG units in paternal transmissions, but only by 0.11 units in maternal transmissions (p = 0.008), whereas haplogroup C repeat lengths decreased in both paternal and maternal transmissions. Conclusions The low frequency of HD in Finland is partly explained by the low frequency of the HD-associated haplogroup A in the Finnish population. There were remarkable differences in intergenerational CAG repeat dynamics that depended on HTT haplotype and parent gender.
Collapse
Affiliation(s)
- Susanna Ylönen
- Division of Clinical Neuroscience (S.Y., K.M.), Neurology, University of Oulu; Department of Neurology and Medical Research Center (S.Y., K.M.), Oulu University Hospital; Department of Neurology (J.O.T.S.), North Karelia Central Hospital, Siun Sote, Joensuu; Division of Clinical Neurosciences (J.O.T.S.), Turku University Hospital; Neurology (J.O.T.S.), University of Turku; Department of Clinical Genetics (M.H.), Turku University Hospital; and Institute of Biomedicine (M.H.), University of Turku, Finland
| | - Jussi O T Sipilä
- Division of Clinical Neuroscience (S.Y., K.M.), Neurology, University of Oulu; Department of Neurology and Medical Research Center (S.Y., K.M.), Oulu University Hospital; Department of Neurology (J.O.T.S.), North Karelia Central Hospital, Siun Sote, Joensuu; Division of Clinical Neurosciences (J.O.T.S.), Turku University Hospital; Neurology (J.O.T.S.), University of Turku; Department of Clinical Genetics (M.H.), Turku University Hospital; and Institute of Biomedicine (M.H.), University of Turku, Finland
| | - Marja Hietala
- Division of Clinical Neuroscience (S.Y., K.M.), Neurology, University of Oulu; Department of Neurology and Medical Research Center (S.Y., K.M.), Oulu University Hospital; Department of Neurology (J.O.T.S.), North Karelia Central Hospital, Siun Sote, Joensuu; Division of Clinical Neurosciences (J.O.T.S.), Turku University Hospital; Neurology (J.O.T.S.), University of Turku; Department of Clinical Genetics (M.H.), Turku University Hospital; and Institute of Biomedicine (M.H.), University of Turku, Finland
| | - Kari Majamaa
- Division of Clinical Neuroscience (S.Y., K.M.), Neurology, University of Oulu; Department of Neurology and Medical Research Center (S.Y., K.M.), Oulu University Hospital; Department of Neurology (J.O.T.S.), North Karelia Central Hospital, Siun Sote, Joensuu; Division of Clinical Neurosciences (J.O.T.S.), Turku University Hospital; Neurology (J.O.T.S.), University of Turku; Department of Clinical Genetics (M.H.), Turku University Hospital; and Institute of Biomedicine (M.H.), University of Turku, Finland
| |
Collapse
|
31
|
Testa CM, Jankovic J. Huntington disease: A quarter century of progress since the gene discovery. J Neurol Sci 2019; 396:52-68. [DOI: 10.1016/j.jns.2018.09.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023]
|
32
|
Jamali Z, Dianatpour M, Miryounesi M, Modarressi MH. A study of CAG repeat instability of HTT gene following spermatogenesis, by single sperm analysis. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Harding RJ, Tong YF. Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin 2018; 39:754-769. [PMID: 29620053 DOI: 10.1038/aps.2018.11] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/18/2018] [Indexed: 02/08/2023]
Abstract
Many neurodegenerative diseases are characterized by impairment of protein quality control mechanisms in neuronal cells. Ineffective clearance of misfolded proteins by the proteasome, autophagy pathways and exocytosis leads to accumulation of toxic protein oligomers and aggregates in neurons. Toxic protein species affect various cellular functions resulting in the development of a spectrum of different neurodegenerative proteinopathies, including Huntington's disease (HD). Playing an integral role in proteostasis, dysfunction of the ubiquitylation system in HD is progressive and multi-faceted with numerous biochemical pathways affected, in particular, the ubiquitin-proteasome system and autophagy routes for protein aggregate degradation. Unravelling the molecular mechanisms involved in HD pathogenesis of proteostasis provides new insight in disease progression in HD as well as possible therapeutic avenues. Recent developments of potential therapeutics are discussed in this review.
Collapse
|
34
|
Kay C, Collins JA, Wright GEB, Baine F, Miedzybrodzka Z, Aminkeng F, Semaka AJ, McDonald C, Davidson M, Madore SJ, Gordon ES, Gerry NP, Cornejo-Olivas M, Squitieri F, Tishkoff S, Greenberg JL, Krause A, Hayden MR. The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population. Am J Med Genet B Neuropsychiatr Genet 2018; 177:346-357. [PMID: 29460498 DOI: 10.1002/ajmg.b.32618] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/21/2017] [Indexed: 01/31/2023]
Abstract
Huntington disease (HD) is the most common monogenic neurodegenerative disorder in populations of European ancestry, but occurs at lower prevalence in populations of East Asian or black African descent. New mutations for HD result from CAG repeat expansions of intermediate alleles (IAs), usually of paternal origin. The differing prevalence of HD may be related to the rate of new mutations in a population, but no comparative estimates of IA frequency or the HD new mutation rate are available. In this study, we characterize IA frequency and the CAG repeat distribution in fifteen populations of diverse ethnic origin. We estimate the HD new mutation rate in a series of populations using molecular IA expansion rates. The frequency of IAs was highest in Hispanic Americans and Northern Europeans, and lowest in black Africans and East Asians. The prevalence of HD correlated with the frequency of IAs by population and with the proportion of IAs found on the HD-associated A1 haplotype. The HD new mutation rate was estimated to be highest in populations with the highest frequency of IAs. In European ancestry populations, one in 5,372 individuals from the general population and 7.1% of individuals with an expanded CAG repeat in the HD range are estimated to have a molecular new mutation. Our data suggest that the new mutation rate for HD varies substantially between populations, and that IA frequency and haplotype are closely linked to observed epidemiological differences in the prevalence of HD across major ancestry groups in different countries.
Collapse
Affiliation(s)
- Chris Kay
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer A Collins
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Galen E B Wright
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Fiona Baine
- Division of Human Genetics, Department of Pathology, University of Cape Town, South Africa.,Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zosia Miedzybrodzka
- Medical Genetics Group, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Folefac Aminkeng
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada.,Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Alicia J Semaka
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra McDonald
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Mark Davidson
- Medical Genetics Group, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Steven J Madore
- Molecular Biology Group, Coriell Institute for Medical Research, Camden, New Jersey
| | - Erynn S Gordon
- Molecular Biology Group, Coriell Institute for Medical Research, Camden, New Jersey
| | - Norman P Gerry
- Molecular Biology Group, Coriell Institute for Medical Research, Camden, New Jersey
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Ferdinando Squitieri
- IRCCS Casa Sollievo della Sofferenza Hospital, Huntington and Rare Diseases Unit (CSS-Mendel Rome), San Giovanni Rotondo, Italy
| | - Sarah Tishkoff
- Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacquie L Greenberg
- Division of Human Genetics, Department of Pathology, University of Cape Town, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael R Hayden
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Abstract
Huntington disease is a monogenic neurodegenerative disorder that displays an autosomal-dominant pattern of inheritance. It is characterized by motor, psychiatric, and cognitive symptoms that progress over 15-20 years. Since the identification of the causative genetic mutation in 1993 much has been discovered about the underlying pathogenic mechanisms, but as yet there are no disease-modifying therapies available. This chapter reviews the epidemiology, genetic basis, pathogenesis, presentation, and clinical management of Huntington disease. The principles of genetic testing are explained. We also describe recent developments in the ongoing search for therapeutics and for biomarkers to track disease progression.
Collapse
Affiliation(s)
- Rhia Ghosh
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.
| |
Collapse
|
36
|
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in the HTT gene. Repeat length can change over time, both in individual cells and between generations, and longer repeats may drive pathology. Cellular DNA repair systems have long been implicated in CAG repeat instability but recent genetic evidence from humans linking DNA repair variants to HD onset and progression has reignited interest in this area. The DNA damage response plays an essential role in maintaining genome stability, but may also license repeat expansions in the context of HD. In this chapter we summarize the methods developed to assay CAG repeat expansion/contraction in vitro and in cells, and review the DNA repair genes tested in mouse models of HD. While none of these systems is currently ideal, new technologies, such as long-read DNA sequencing, should improve the sensitivity of assays to assess the effects of DNA repair pathways in HD. Improved assays will be essential precursors to high-throughput testing of small molecules that can alter specific steps in DNA repair pathways and perhaps ameliorate expansion or enhance contraction of the HTT CAG repeat.
Collapse
|
37
|
Ghosh R, Tabrizi SJ. Clinical Features of Huntington's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:1-28. [PMID: 29427096 DOI: 10.1007/978-3-319-71779-1_1] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is the most common monogenic neurodegenerative disease and the commonest genetic dementia in the developed world. With autosomal dominant inheritance, typically mid-life onset, and unrelenting progressive motor, cognitive and psychiatric symptoms over 15-20 years, its impact on patients and their families is devastating. The causative genetic mutation is an expanded CAG trinucleotide repeat in the gene encoding the Huntingtin protein, which leads to a prolonged polyglutamine stretch at the N-terminus of the protein. Since the discovery of the gene over 20 years ago much progress has been made in HD research, and although there are currently no disease-modifying treatments available, there are a number of exciting potential therapeutic developments in the pipeline. In this chapter we discuss the epidemiology, genetics and pathogenesis of HD as well as the clinical presentation and management of HD, which is currently focused on symptomatic treatment. The principles of genetic testing for HD are also explained. Recent developments in therapeutics research, including gene silencing and targeted small molecule approaches are also discussed, as well as the search for HD biomarkers that will assist the validation of these potentially new treatments.
Collapse
Affiliation(s)
- Rhia Ghosh
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
38
|
Nance MA. Genetic counseling and testing for Huntington's disease: A historical review. Am J Med Genet B Neuropsychiatr Genet 2017; 174:75-92. [PMID: 27174011 DOI: 10.1002/ajmg.b.32453] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/15/2016] [Indexed: 12/26/2022]
Abstract
This manuscript describes the ways in which genetic counseling has evolved since John Pearson and Sheldon Reed first promoted "a genetic education" in the 1950s as a voluntary, non-directive clinical tool for permitting individual decision making. It reviews how the emergence of Huntington's disease (HD) registries and patient support organizations, genetic testing, and the discovery of a disease-causing CAG repeat expansion changed the contours of genetic counseling for families with HD. It also reviews the guidelines, outcomes, ethical and laboratory challenges, and uptake of predictive, prenatal, and preimplantation testing, and it casts a vision for how clinicians can better make use of genetic counseling to reach a broader pool of families that may be affected by HD and to ensure that genetic counseling is associated with the best levels of care. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martha A Nance
- Struthers Parkinson's Center, Golden Valley, Minnesota.,Hennepin County Medical Center, Minneapolis, Minnesota
| |
Collapse
|
39
|
Kay C, Hayden MR, Leavitt BR. Epidemiology of Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2017; 144:31-46. [DOI: 10.1016/b978-0-12-801893-4.00003-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
|
41
|
Kay C, Collins JA, Miedzybrodzka Z, Madore SJ, Gordon ES, Gerry N, Davidson M, Slama RA, Hayden MR. Huntington disease reduced penetrance alleles occur at high frequency in the general population. Neurology 2016; 87:282-8. [PMID: 27335115 DOI: 10.1212/wnl.0000000000002858] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/16/2016] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE To directly estimate the frequency and penetrance of CAG repeat alleles associated with Huntington disease (HD) in the general population. METHODS CAG repeat length was evaluated in 7,315 individuals from 3 population-based cohorts from British Columbia, the United States, and Scotland. The frequency of ≥36 CAG alleles was assessed out of a total of 14,630 alleles. The general population frequency of reduced penetrance alleles (36-39 CAG) was compared to the prevalence of patients with HD with genetically confirmed 36-39 CAG from a multisource clinical ascertainment in British Columbia, Canada. The penetrance of 36-38 CAG repeat alleles for HD was estimated for individuals ≥65 years of age and compared against previously reported clinical penetrance estimates. RESULTS A total of 18 of 7,315 individuals had ≥36 CAG, revealing that approximately 1 in 400 individuals from the general population have an expanded CAG repeat associated with HD (0.246%). Individuals with CAG 36-37 genotypes are the most common (36, 0.096%; 37, 0.082%; 38, 0.027%; 39, 0.000%; ≥40, 0.041%). General population CAG 36-38 penetrance rates are lower than penetrance rates extrapolated from clinical cohorts. CONCLUSION HD alleles with a CAG repeat length of 36-38 occur at high frequency in the general population. The infrequent diagnosis of HD at this CAG length is likely due to low penetrance. Another important contributing factor may be reduced ascertainment of HD in those of older age.
Collapse
Affiliation(s)
- Chris Kay
- From the Centre for Molecular Medicine and Therapeutics (C.K., J.A.C., R.A.S., M.R.H.), University of British Columbia, Canada; Medical Genetics Group (Z.M., M.D.), School of Medicine and Dentistry, University of Aberdeen, UK; and Molecular Biology Group (S.J.M., E.S.G., N.G.), Coriell Institute for Medical Research, Camden, NJ
| | - Jennifer A Collins
- From the Centre for Molecular Medicine and Therapeutics (C.K., J.A.C., R.A.S., M.R.H.), University of British Columbia, Canada; Medical Genetics Group (Z.M., M.D.), School of Medicine and Dentistry, University of Aberdeen, UK; and Molecular Biology Group (S.J.M., E.S.G., N.G.), Coriell Institute for Medical Research, Camden, NJ
| | - Zosia Miedzybrodzka
- From the Centre for Molecular Medicine and Therapeutics (C.K., J.A.C., R.A.S., M.R.H.), University of British Columbia, Canada; Medical Genetics Group (Z.M., M.D.), School of Medicine and Dentistry, University of Aberdeen, UK; and Molecular Biology Group (S.J.M., E.S.G., N.G.), Coriell Institute for Medical Research, Camden, NJ
| | - Steven J Madore
- From the Centre for Molecular Medicine and Therapeutics (C.K., J.A.C., R.A.S., M.R.H.), University of British Columbia, Canada; Medical Genetics Group (Z.M., M.D.), School of Medicine and Dentistry, University of Aberdeen, UK; and Molecular Biology Group (S.J.M., E.S.G., N.G.), Coriell Institute for Medical Research, Camden, NJ
| | - Erynn S Gordon
- From the Centre for Molecular Medicine and Therapeutics (C.K., J.A.C., R.A.S., M.R.H.), University of British Columbia, Canada; Medical Genetics Group (Z.M., M.D.), School of Medicine and Dentistry, University of Aberdeen, UK; and Molecular Biology Group (S.J.M., E.S.G., N.G.), Coriell Institute for Medical Research, Camden, NJ
| | - Norman Gerry
- From the Centre for Molecular Medicine and Therapeutics (C.K., J.A.C., R.A.S., M.R.H.), University of British Columbia, Canada; Medical Genetics Group (Z.M., M.D.), School of Medicine and Dentistry, University of Aberdeen, UK; and Molecular Biology Group (S.J.M., E.S.G., N.G.), Coriell Institute for Medical Research, Camden, NJ
| | - Mark Davidson
- From the Centre for Molecular Medicine and Therapeutics (C.K., J.A.C., R.A.S., M.R.H.), University of British Columbia, Canada; Medical Genetics Group (Z.M., M.D.), School of Medicine and Dentistry, University of Aberdeen, UK; and Molecular Biology Group (S.J.M., E.S.G., N.G.), Coriell Institute for Medical Research, Camden, NJ
| | - Ramy A Slama
- From the Centre for Molecular Medicine and Therapeutics (C.K., J.A.C., R.A.S., M.R.H.), University of British Columbia, Canada; Medical Genetics Group (Z.M., M.D.), School of Medicine and Dentistry, University of Aberdeen, UK; and Molecular Biology Group (S.J.M., E.S.G., N.G.), Coriell Institute for Medical Research, Camden, NJ
| | - Michael R Hayden
- From the Centre for Molecular Medicine and Therapeutics (C.K., J.A.C., R.A.S., M.R.H.), University of British Columbia, Canada; Medical Genetics Group (Z.M., M.D.), School of Medicine and Dentistry, University of Aberdeen, UK; and Molecular Biology Group (S.J.M., E.S.G., N.G.), Coriell Institute for Medical Research, Camden, NJ.
| |
Collapse
|
42
|
Prenatal testing in Huntington disease: after the test, choices recommence. Eur J Hum Genet 2016; 24:1535-1540. [PMID: 27302844 DOI: 10.1038/ejhg.2016.59] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 11/08/2022] Open
Abstract
The objective of this study was (1) to determine the impact of prenatal diagnosis (PND) for Huntington disease (HD) on subsequent reproductive choices and family structure; and (2) to assess whether children born after PND were informed of their genetic status. Out of 354 presymptomatic carriers of HD gene mutation, aged 18-45 years, 61 couples requested 101 PNDs. Fifty-four women, 29 female carriers and 25 spouses of male carriers, accepted to be interviewed (0.6-16.3 years after the last PND, median 6.5 years) on their obstetrical history and information given to children born after PND. Women were willing to undergo two or more PNDs with a final success rate of 75%. Reproductive decisions differed depending on the outcome of the first PND. If favourable, 62% couples decided against another pregnancy and 10% chose to have an untested child. If unfavourable, 83% decided for another pregnancy (P<0.01), and the majority (87%) re-entered the PND procedure. In contrast, after a second PND, only 37% asked for a PND and 30% chose to have an untested child. Thirty-three percent had both, tested and untested children. Among children born after PND, 10 years and older, 75% were informed of their genetic status. The decision to prevent transmission of the HD mutation is made anew with each pregnancy. Couples may need more psychological support after PND and pre-counselling sessions should take into account the effect of the outcome of a first PND on subsequent reproductive choices.
Collapse
|
43
|
Thion MS, Tézenas du Montcel S, Golmard JL, Vacher S, Barjhoux L, Sornin V, Cazeneuve C, Bièche I, Sinilnikova O, Stoppa-Lyonnet D, Durr A, Humbert S. CAG repeat size in Huntingtin alleles is associated with cancer prognosis. Eur J Hum Genet 2016; 24:1310-5. [PMID: 26980106 DOI: 10.1038/ejhg.2016.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 12/26/2022] Open
Abstract
The abnormal expansion of a ≥36 CAG unit tract in the Huntingtin gene (HTT) leads to Huntington's disease (HD), but has also been associated with cancer: the incidence of cancer is lower in HD patients than in age-matched controls, but HD-causing variants of HTT accelerate the progression of breast tumors and the development of metastases in mouse models of breast cancer. To investigate the relationship between HTT CAGs and cancer, data concerning 2407 women with BRCA1 or BRCA2 mutations that predispose to breast and ovarian cancers and 431 patients with breast cancer without family histories were studied; the size of the CAG expansions on both HTT alleles was determined in each subject. The proportion of individuals carrying a CAG expansion in a pathological range for HD was 10 times more frequent than previously reported in the literature. In carriers of BRCA2 mutations, the length of the HTT CAG tract was correlated with lower incidence of ovarian cancer. Among carriers of BRCA1 mutations who developed a breast cancer, its onset occurred 2.4 years earlier in individuals with intermediate HTT alleles (≥27) than in those with a CAG tract <27. Finally, in patients with sporadic HER2 breast cancer, metastasis increased by a factor of 11.10 per 10 additional CAG repeats in HTT. We concluded that whereas long CAG length could be associated with lower cancer incidence, it could also be paradoxically associated with cancer severity (age of apparition and metastasis development).
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut Curie, Paris, France.,CNRS UMR 3306, Orsay, France.,INSERM U1005, Orsay, France.,University Paris Sud 11, Orsay, France
| | - Sophie Tézenas du Montcel
- Department of Biostatistics and Medical Informatics, Assistance Publique-Hôpitaux de Paris, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France.,INSERM, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France
| | - Jean-Louis Golmard
- Department of Biostatistics and Medical Informatics, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Laure Barjhoux
- INSERM U1052, CNRS UMR5286, Université Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Valérie Sornin
- INSERM U1052, CNRS UMR5286, Université Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Cécile Cazeneuve
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, INSERM U975, CNRS UMR7225, UPMC Paris VI UMR S975, Paris, France.,Assistance Publique-Hôpitaux de Paris, Département de Génétique, Centre Hospitalier Universitaire Pitié-Salpêtrière, Paris, France
| | - Ivan Bièche
- Institut Curie, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, France
| | - Olga Sinilnikova
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Centre Hospitalier Universitaire de Lyon, Centre Léon Bérard, Lyon, France
| | | | - Alexandra Durr
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, INSERM U975, CNRS UMR7225, UPMC Paris VI UMR S975, Paris, France.,Assistance Publique-Hôpitaux de Paris, Département de Génétique, Centre Hospitalier Universitaire Pitié-Salpêtrière, Paris, France
| | - Sandrine Humbert
- University of Grenoble Alpes, Grenoble Institut des Neurosciences, INSERM U1216, Grenoble, France.,INSERM, U1216, Grenoble, France
| |
Collapse
|
44
|
Sun YM, Zhang YB, Wu ZY. Huntington's Disease: Relationship Between Phenotype and Genotype. Mol Neurobiol 2016; 54:342-348. [PMID: 26742514 DOI: 10.1007/s12035-015-9662-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease with the typical manifestations of involuntary movements, psychiatric and behavior disorders, and cognitive impairment. It is caused by the dynamic mutation in CAG triplet repeat number in exon 1 of huntingtin (HTT) gene. The symptoms of HD especially the age at onset are related to the genetic characteristics, both the CAG triplet repeat and the modified factors. Here, we reviewed the recent advancement on the genotype-phenotype relationship of HD, mainly focus on the characteristics of different expanded CAG repeat number, genetic modifiers, and CCG repeat number in the 3' end of CAG triplet repeat and their effects on the phenotype. We also reviewed the special forms of HD (juvenile HD, atypical onset HD, and homozygous HD) and their phenotype-genotype correlations. The review will aid clinicians to predict the onset age and disease course of HD, give the genetic counseling, and accelerate research into the HD mechanism.
Collapse
Affiliation(s)
- Yi-Min Sun
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan-Bin Zhang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
45
|
Oosterloo M, Van Belzen MJ, Bijlsma EK, Roos RA. Is There Convincing Evidence that Intermediate Repeats in the HTT Gene Cause Huntington’s Disease? J Huntingtons Dis 2015; 4:141-8. [DOI: 10.3233/jhd-140120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mayke Oosterloo
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martine J. Van Belzen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emilia K. Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymund A.C. Roos
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
46
|
Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ. Huntington disease. Nat Rev Dis Primers 2015; 1:15005. [PMID: 27188817 DOI: 10.1038/nrdp.2015.5] [Citation(s) in RCA: 1011] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Huntington disease is devastating to patients and their families - with autosomal dominant inheritance, onset typically in the prime of adult life, progressive course, and a combination of motor, cognitive and behavioural features. The disease is caused by an expanded CAG trinucleotide repeat (of variable length) in HTT, the gene that encodes the protein huntingtin. In mutation carriers, huntingtin is produced with abnormally long polyglutamine sequences that confer toxic gains of function and predispose the protein to fragmentation, resulting in neuronal dysfunction and death. In this Primer, we review the epidemiology of Huntington disease, noting that prevalence is higher than previously thought, geographically variable and increasing. We describe the relationship between CAG repeat length and clinical phenotype, as well as the concept of genetic modifiers of the disease. We discuss normal huntingtin protein function, evidence for differential toxicity of mutant huntingtin variants, theories of huntingtin aggregation and the many different mechanisms of Huntington disease pathogenesis. We describe the genetic and clinical diagnosis of the condition, its clinical assessment and the multidisciplinary management of symptoms, given the absence of effective disease-modifying therapies. We review past and present clinical trials and therapeutic strategies under investigation, including impending trials of targeted huntingtin-lowering drugs and the progress in development of biomarkers that will support the next generation of trials. For an illustrated summary of this Primer, visit: http://go.nature.com/hPMENh.
Collapse
Affiliation(s)
- Gillian P Bates
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Ray Dorsey
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Kay
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martha Nance
- Struthers Parkinson's Center, Golden Valley, Minneapolis, Minnesota, USA; and Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachael I Scahill
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edward J Wild
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
47
|
Moran S, Chi T, Prucha MS, Ahn KS, Connor-Stroud F, Jean S, Gould K, Chan AWS. Germline transmission in transgenic Huntington's disease monkeys. Theriogenology 2015; 84:277-85. [PMID: 25917881 DOI: 10.1016/j.theriogenology.2015.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/15/2015] [Accepted: 03/18/2015] [Indexed: 12/24/2022]
Abstract
Transgenic nonhuman primate models are an increasingly popular model for neurologic and neurodegenerative disease because their brain functions and neural anatomies closely resemble those of humans. Transgenic Huntington's disease monkeys (HD monkeys) developed clinical features similar to those seen in HD patients, making the monkeys suitable for a preclinical study of HD. However, until HD monkey colonies can be readily expanded, their use in preclinical studies will be limited. In the present study, we confirmed germline transmission of the mutant huntingtin (mHTT) transgene in both embryonic stem cells generated from three male HD monkey founders (F0) and in second-generation offspring (F1) produced via artificial insemination by using intrauterine insemination technique. A total of five offspring were produced from 15 females that were inseminated by intrauterine insemination using semen collected from the three HD founders (5 of 15, 33%). Thus far, sperm collected from the HD founder (rHD8) has led to two F1 transgenic HD monkeys with germline transmission rate at 100% (2 of 2). mHTT expression was confirmed by quantitative real-time polymerase chain reaction using skin fibroblasts from the F1 HD monkeys and induced pluripotent stem cells established from one of the F1 HD monkeys (rHD8-2). Here, we report the stable germline transmission and expression of the mHTT transgene in HD monkeys, which suggest possible expansion of HD monkey colonies for preclinical and biomedical research studies.
Collapse
Affiliation(s)
- Sean Moran
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Tim Chi
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Melinda S Prucha
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Kwang Sung Ahn
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Fawn Connor-Stroud
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sherrie Jean
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Kenneth Gould
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Anthony W S Chan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
48
|
Uhlmann WR, Peñaherrera MS, Robinson WP, Milunsky JM, Nicholson JM, Albin RL. Biallelic mutations in huntington disease: A new case with just one affected parent, review of the literature and terminology. Am J Med Genet A 2015; 167A:1152-60. [DOI: 10.1002/ajmg.a.37009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/22/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Wendy R. Uhlmann
- Division of Molecular Medicine and Genetics; Department of Internal Medicine; University of Michigan; Ann Arbor Michigan
- Department of Human Genetics; University of Michigan; Ann Arbor Michigan
| | - Maria S. Peñaherrera
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia
- Child and Family Research Institute; Vancouver British Columbia
| | - Wendy P. Robinson
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia
- Child and Family Research Institute; Vancouver British Columbia
| | | | - Jane M. Nicholson
- Division of Molecular Medicine and Genetics; Department of Internal Medicine; University of Michigan; Ann Arbor Michigan
- Department of Obstetrics and Gynecology; University of Michigan; Ann Arbor Michigan
| | - Roger L. Albin
- Department of Neurology; University of Michigan; Ann Arbor Michigan
- VA Ann Arbor Healthcare System; Geriatrics Research, Education, and Clinical Center; Ann Arbor Michigan
| |
Collapse
|
49
|
Semaka A, Kay C, Belfroid RDM, Bijlsma EK, Losekoot M, van Langen IM, van Maarle MC, Oosterloo M, Hayden MR, van Belzen MJ. A new mutation for Huntington disease following maternal transmission of an intermediate allele. Eur J Med Genet 2014; 58:28-30. [PMID: 25464109 DOI: 10.1016/j.ejmg.2014.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
New mutations for Huntington disease (HD) originate from CAG repeat expansion of intermediate alleles (27-35 CAG). Expansions of such alleles into the pathological range (≥ 36 CAG) have been exclusively observed in paternal transmission. We report the occurrence of a new mutation that defies the paternal expansion bias normally observed in HD. A maternal intermediate allele with 33 CAG repeats expanded in transmission to 48 CAG repeats causing a de novo case of HD in the family. Retrospectively, the mother presented with cognitive decline, but HD was never considered in the differential diagnosis. She was diagnosed with dementia and testing for HD was only performed after her daughter had been diagnosed. This observation of an intermediate allele expanding into the full penetrance HD range after maternal transmission has important implications for genetic counselling of females with intermediate repeats.
Collapse
Affiliation(s)
- Alicia Semaka
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Chris Kay
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - René D M Belfroid
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Irene M van Langen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Merel C van Maarle
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Mayke Oosterloo
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Martine J van Belzen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
50
|
Trinucleotide expansion in disease: why is there a length threshold? Curr Opin Genet Dev 2014; 26:131-40. [PMID: 25282113 DOI: 10.1016/j.gde.2014.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 11/24/2022]
Abstract
Trinucleotide repeats (TNRs) expansion disorders are severe neurodegenerative and neuromuscular disorders that arise from inheriting a long tract (30-50 copies) of a trinucleotide unit within or near an expressed gene (Figure 1a). The mutation is referred to as 'trinucleotide expansion' since the number of triplet units in a mutated gene is greater than the number found in the normal gene. Expansion becomes obvious once the number of repeating units passes a critical threshold length, but what happens at the threshold to render the repeating tract unstable? Here we discuss DNA-dependent and RNA-dependent models by which a particular DNA length permits a rapid transition to an unstable state.
Collapse
|