1
|
Schunk R, Halder M, Schäfer M, Johannes E, Heim A, Boland A, Mayer TU. A phosphate-binding pocket in cyclin B3 is essential for XErp1/Emi2 degradation in meiosis I. EMBO Rep 2025; 26:768-790. [PMID: 39747666 PMCID: PMC11811201 DOI: 10.1038/s44319-024-00347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
To ensure the correct euploid state of embryos, it is essential that vertebrate oocytes await fertilization arrested at metaphase of meiosis II. This MII arrest is mediated by XErp1/Emi2, which inhibits the ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome). Cyclin B3 in complex with Cdk1 (cyclin-dependent kinase 1) is essential to prevent an untimely arrest of vertebrate oocytes in meiosis I by targeting XErp1/Emi2 for degradation. Yet, the molecular mechanism of XErp1/Emi2 degradation in MI is not well understood. Here, by combining TRIM-Away in oocytes with egg extract and in vitro studies, we demonstrate that a hitherto unknown phosphate-binding pocket in cyclin B3 is essential for efficient XErp1/Emi2 degradation in meiosis I. This pocket enables Cdk1/cyclin B3 to bind pre-phosphorylated XErp1/Emi2 facilitating further phosphorylation events, which ultimately target XErp1/Emi2 for degradation in a Plk1- (Polo-like kinase 1) dependent manner. Key elements of this degradative mechanism are conserved in frog and mouse. Our studies identify a novel, evolutionarily conserved determinant of Cdk/cyclin substrate specificity essential to prevent an untimely oocyte arrest at meiosis I with catastrophic consequences upon fertilization.
Collapse
Affiliation(s)
- Rebecca Schunk
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Marc Halder
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Michael Schäfer
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Elijah Johannes
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Andreas Heim
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Andreas Boland
- Department of Molecular and Cellular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva, Switzerland
| | - Thomas U Mayer
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.
| |
Collapse
|
2
|
Cirillo E, Tarallo A, Toriello E, Carissimo A, Giardino G, De Rosa A, Damiano C, Soresina A, Badolato R, Dellepiane RM, Baselli LA, Carrabba M, Fabio G, Bertolini P, Montin D, Conti F, Romano R, Pozzi E, Ferrero G, Roncarati R, Ferracin M, Brusco A, Parenti G, Pignata C. MicroRNA dysregulation in ataxia telangiectasia. Front Immunol 2024; 15:1444130. [PMID: 39224604 PMCID: PMC11366618 DOI: 10.3389/fimmu.2024.1444130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Ataxia telangiectasia (AT) is a rare disorder characterized by neurodegeneration, combined immunodeficiency, a predisposition to malignancies, and high clinical variability. Profiling of microRNAs (miRNAs) may offer insights into the underlying mechanisms of complex rare human diseases, as miRNAs play a role in various biological functions including proliferation, differentiation, and DNA repair. In this study, we investigate the differential expression of miRNAs in samples from AT patients to identify miRNA patterns and analyze how these patterns are related to the disease. Methods We enrolled 20 AT patients (mean age 17.7 ± 9.6 years old) and collected clinical and genetic data. We performed short non-coding RNA-seq analysis on peripheral blood mononuclear cells (PBMCs) and fibroblasts to compare the miRNA expression profile between AT patients and controls. Results We observed 42 differentially expressed (DE)-miRNAs in blood samples and 26 in fibroblast samples. Among these, three DE-miRNAs, miR-342-3p, miR-30a-5p, and miR-195-5p, were further validated in additional AT samples, confirming their dysregulation. Discussion We identified an AT-related miRNA signature in blood cells and fibroblast samples collected from a group of AT patients. We also predicted several dysregulated pathways, primarily related to cancer, immune system control, or inflammatory processes. The findings suggest that miRNAs may provide insights into the pathophysiology and tumorigenesis of AT and have the potential to serve as useful biomarkers in cancer research.
Collapse
Affiliation(s)
- Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Antonietta Tarallo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Elisabetta Toriello
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | | | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Carla Damiano
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Annarosa Soresina
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili, Brescia, Italy
| | - Rosa Maria Dellepiane
- Pediatric Area, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucia A. Baselli
- Pediatric Area, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Carrabba
- Department of Internal Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Fabio
- Department of Internal Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Bertolini
- Unità Operativa Complessa (U.O.C) di Pediatria e Oncoematologia, Azienda Ospedaliero Universitaria Parma, Parma, Italy
| | - Davide Montin
- Department of Pediatric and Public Health Sciences, University of Torino, Torino, Italy
| | - Francesca Conti
- Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Elisa Pozzi
- Centro Regionale di Biologia Molecolare – Arpa Piemonte, Torino, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Roberta Roncarati
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi Montalcini, University of Torino, Torino, Italy
- Unit of Medical Genetics, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Giancarlo Parenti
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| |
Collapse
|
3
|
Hu H, Tan D, Luo T, Tong X, Han M, Shen J, Dai F. Cyclin B3 plays pleiotropic roles in female reproductive organogenesis and early embryogenesis in the silkworm, Bombyx mori. PEST MANAGEMENT SCIENCE 2024; 80:376-387. [PMID: 37698372 DOI: 10.1002/ps.7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND The reproductive system plays a crucial role in insect survival, reproduction and species specificity. Understanding the molecular mechanisms underlying reproductive organogenesis contributes to improving the efficiency of sterile insect technique marked by an eco-friendly pest management strategy. Lepidoptera is one of the largest orders of insects, most of which are major pests in agriculture and forestry. Our study aimed to screen the genes responsible for reproductive organogenesis and unravel the mechanism underlying female reproductive organ defects. RESULTS Morphological investigation of female reproductive organs showed a defective connection between oviductus geminus and oviductus communis on the second day of pupa (P2) in Speckled mutant silkworm. RNA_Seq identified a total of 18 049 transcripts that were expressed in the P2 female internal reproductive organs without ovary in Spc/+ compared to +Spc /+Spc . Differential expression analysis identified 312 up-regulated genes and 221 down-regulated genes in Spc/+. KEGG analysis identified 44 significantly enriched pathways. The results of qRT-PCR performed on 33 genes significantly matched the outcomes of the RNA_Seq. Dysfunction of Cyclin B3 resulted in a defective connection of the oviductus communis with the ovariole, dysfunction of oogenesis, and a petite body. Moreover, homozygous recessive lethality of Cyclin B3/Cyclin B3 occurred during early embryogenesis. CONCLUSION Our results suggest that Cyclin B3 is a pleiotropic functional gene that regulates early embryogenesis, oogenesis, development, and female reproductive organogenesis. These results showed that Cyclin B3 has significant effects on lepidopteran mortality, growth, and reproductive physiology, which might be considered a novel and potentially eco-friendly target for lepidopteran pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hai Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Duan Tan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Tianfu Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minjin Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Jianghong Shen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Wang C, Chen MX, Zhang Y, Bai X, Cao Q, Han J, Zhang N, Zhao C, Ling X, Rui X, Guan Y, Zhang J, Huo R. Mutations in CCNB3 affect its location thus causing a multiplicity of phenotypes in human oocytes maturation by aberrant CDK1 activity and APC/C activity at different stages. J Ovarian Res 2023; 16:178. [PMID: 37635245 PMCID: PMC10463413 DOI: 10.1186/s13048-023-01229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/01/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Oocyte maturation arrest results in female infertility and the genetic etiology of this phenotype remains largely unknown. Previous studies have proven that cyclins play a significant role in the cell cycle both in meiosis and mitosis. Cyclin B3 (CCNB3) is one of the members of the cyclin family and its function in human oocyte maturation is poorly understood. METHODS 118 infertile patients were recruited and WES was performed for 68 independent females that experienced oocyte maturation arrest. Four mutations in CCNB3 were found and effects of these mutations were validated by Sanger sequencing and in vitro functional analyses. RESULTS We found these mutations altered the location of cyclin B3 which affected the function of cyclin dependent kinase 1 (CDK1) and led to mouse oocyte arrested at germinal vesicle (GV) stage. And then, low CDK1 activity influenced the degradation of cadherin 1 (CDH1) and the accumulation of cell division cycle 20 (CDC20) which are two types of anaphase-promoting complex/cyclosome (APC/C) activators and act in different stages of the cell cycle. Finally, APC/C activity was downregulated due to insufficient CDC20 level and resulted in oocyte metaphase I (MI) arrest. Moreover, we also found that the addition of PP1 inhibitor Okadic acid and CDK1 inhibitor Roscovitine at corresponding stages during oocyte in vitro maturation (IVM) significantly improved the maturation rates in CCNB3 mutant cRNAs injected oocytes. The above experiments were performed in mouse oocytes. CONCLUSION Here, we report five independent patients in which mutations in CCNB3 may be the cause of oocyte maturation arrest. Our findings shed lights on the critical role of CCNB3 in human oocyte maturation.
Collapse
Affiliation(s)
- Congjing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Municipal Hospital, Gusu School, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Meng Xi Chen
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Zhang
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xue Bai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Municipal Hospital, Gusu School, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Municipal Hospital, Gusu School, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jian Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Municipal Hospital, Gusu School, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Nana Zhang
- Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chun Zhao
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ximan Rui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Municipal Hospital, Gusu School, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yichun Guan
- Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Junqiang Zhang
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Municipal Hospital, Gusu School, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Dupré A, Wassmann K. [Cyclin B3: Locking female meiosis to await fertilization]. Med Sci (Paris) 2023; 39:289-292. [PMID: 36943128 DOI: 10.1051/medsci/2023019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Affiliation(s)
- Aude Dupré
- Équipe Mécanismes de la méiose, université Paris-Cité, CNRS, institut Jacques Monod, 75013 Paris, France
| | - Katja Wassmann
- Équipe Mécanismes de la méiose, université Paris-Cité, CNRS, institut Jacques Monod, 75013 Paris, France
| |
Collapse
|
6
|
Cao C, Bai S, Zhang J, Sun X, Meng A, Chen H. Understanding recurrent pregnancy loss: recent advances on its etiology, clinical diagnosis, and management. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:570-589. [PMID: 37724255 PMCID: PMC10471095 DOI: 10.1515/mr-2022-0030] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 09/20/2023]
Abstract
Recurrent pregnancy loss (RPL) has become an important reproductive health issue worldwide. RPL affects about 2%-3% of reproductive-aged women, and makes serious threats to women's physical and mental health. However, the etiology of approximately 50% of RPL cases remains unknown (unexplained RPL), which poses a big challenge for clinical management of these patients. RPL has been widely regarded as a complex disease where its etiology has been attributed to numerous factors. Heretofore, various risk factors for RPL have been identified, such as maternal ages, genetic factors, anatomical structural abnormalities, endocrine dysfunction, prethrombotic state, immunological factors, and infection. More importantly, development and applications of next generation sequencing technology have significantly expanded opportunities to discover chromosomal aberrations and single gene variants responsible for RPL, which provides new insight into its pathogenic mechanisms. Furthermore, based upon patients' diagnostic evaluation and etiologic diagnosis, specific therapeutic recommendations have been established. This review will highlight current understanding and recent advances on RPL, with a special focus on the immunological and genetic etiologies, clinical diagnosis and therapeutic management.
Collapse
Affiliation(s)
- Chunwei Cao
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Province, China
- Guangzhou laboratory, Guangzhou, Guangdong Province, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shiyu Bai
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jing Zhang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Province, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiaoyue Sun
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Province, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Anming Meng
- Guangzhou laboratory, Guangzhou, Guangdong Province, China
| | - Hui Chen
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Cyclin B3 implements timely vertebrate oocyte arrest for fertilization. Dev Cell 2022; 57:2305-2320.e6. [DOI: 10.1016/j.devcel.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
|
8
|
Chotiner JY, Leu NA, Xu Y, Wang PJ. Recurrent pregnancy loss in mice lacking the X-linked Ccnb3 gene. Biol Reprod 2021; 106:382-384. [PMID: 34850816 DOI: 10.1093/biolre/ioab220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jessica Y Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA.,Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Yang Xu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA.,Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Rezaei M, Buckett W, Bareke E, Surti U, Majewski J, Slim R. A protein-truncating mutation in CCNB3 in a patient with recurrent miscarriages and failure of meiosis I. J Med Genet 2021; 59:568-570. [PMID: 34021051 DOI: 10.1136/jmedgenet-2021-107875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Maryam Rezaei
- Human Genetics, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - William Buckett
- Obstetrics and Gynecology, McGill University Health Centre, Montréal, Québec, Canada
| | - Eric Bareke
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Urvashi Surti
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacek Majewski
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Rima Slim
- Human Genetics, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|