1
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
El Ouadih Y, Marques A, Pereira B, Luisoni M, Claise B, Coste J, Sontheimer A, Chaix R, Debilly B, Derost P, Morand D, Durif F, Lemaire JJ. Deep brain stimulation of the subthalamic nucleus in severe Parkinson's disease: relationships between dual-contact topographic setting and 1-year worsening of speech and gait. Acta Neurochir (Wien) 2023; 165:3927-3941. [PMID: 37889334 DOI: 10.1007/s00701-023-05843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/24/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Subthalamic nucleus (STN) deep brain stimulation (DBS) alleviates severe motor fluctuations and dyskinesia in Parkinson's disease, but may result in speech and gait disorders. Among the suspected or demonstrated causes of these adverse effects, we focused on the topography of contact balance (CB; individual, right and left relative dual positions), a scantly studied topic, analyzing the relationships between symmetric or non-symmetric settings, and the worsening of these signs. METHOD An observational monocentric study was conducted on a series of 92 patients after ethical approval. CB was specified by longitudinal and transversal positions and relation to the STN (CB sub-aspects) and totalized at the patient level (patient CB). CB was deemed symmetric when the two contacts were at the same locations relative to the STN. CB was deemed asymmetric when at least one sub-aspect differed in the patient CB. Baseline and 1-year characteristics were routinely collected: (i) general, namely, Unified Parkinson's Disease Rating Scores (UPDRS), II, III motor and IV, daily levodopa equivalent doses, and Parkinson's Disease Questionnaire of Quality of Life (PDQ39) scores; (ii) specific, namely scores for speech (II-5 and III-18) and axial signs (II-14, III-28, III-29, and III-30). Only significant correlations were considered (p < 0.05). RESULTS Baseline characteristics were comparable (symmetric versus asymmetric). CB settings were related to deteriorations of speech and axial signs: communication PDQ39 and UPDRS speech and gait scores worsened exclusively with symmetric settings; the most influential CB sub-aspect was symmetric longitudinal position. CONCLUSION Our findings suggest that avoiding symmetric CB settings, whether by electrode positioning or shaping of electric fields, could reduce worsening of speech and gait.
Collapse
Affiliation(s)
- Youssef El Ouadih
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Ana Marques
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Service de Neurologie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Bruno Pereira
- Direction de La Recherche Clinique Et de L'Innovation, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Maxime Luisoni
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Béatrice Claise
- Service de Radiologie, Unité de Neuroradiologie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Jérôme Coste
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Anna Sontheimer
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Rémi Chaix
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Bérangère Debilly
- Service de Neurologie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Philippe Derost
- Service de Neurologie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Dominique Morand
- Direction de La Recherche Clinique Et de L'Innovation, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Franck Durif
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Service de Neurologie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Université Clermont Auvergne, Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France.
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Hirt L, Thies KA, Ojemann S, Abosch A, Darwin ML, Thompson JA, Kern DS. Case series investigating the differences between stimulation of rostral zona incerta region in isolation or in conjunction with the subthalamic nucleus on acute clinical effects for Parkinson’s disease. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Steinhardt J, Hanssen H, Heldmann M, Neumann A, Münchau A, Schramm P, Rasche D, Saryyeva A, Büntjen L, Voges J, Tronnier V, Krauss JK, Münte TF, Brüggemann N. Sweets for my sweet: modulation of the limbic system drives salience for sweet foods after deep brain stimulation in Parkinson's disease. J Neurol Neurosurg Psychiatry 2022; 93:324-331. [PMID: 34911783 DOI: 10.1136/jnnp-2021-326280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/25/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND An increase in body weight is observed in the majority of patients with Parkinson's disease (PD) who undergo deep brain stimulation (DBS) of the subthalamic nucleus (STN) although the mechanisms are unclear. OBJECTIVES To identify the stimulation-dependent effects on reward-associated and attention-associated neural networks and to determine whether these alterations in functional connectivity are associated with the local impact of DBS on different STN parcellations. METHODS We acquired functional task-related MRI data from 21 patients with PD during active and inactive STN DBS and 19 controls while performing a food viewing paradigm. Electrode placement in the STN was localised using a state-of-the-art approach. Based on the 3D model, the local impact of STN DBS was estimated. RESULTS STN DBS resulted in a mean improvement of motor function of 22.6%±15.5% (on medication) and an increase of body weight of ~4 kg within 2 years of stimulation. DBS of the limbic proportion of the STN was associated with body weight gain and an increased functional connectivity within the salience network and at the same time with a decreased activity within the reward-related network in the context of sweet food images. CONCLUSIONS Our findings indicate increased selective attention for high-caloric foods and a sweet food seeking-like behaviour after DBS particularly when the limbic proportion of the STN was stimulated.
Collapse
Affiliation(s)
- Julia Steinhardt
- Department of Neurology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Henrike Hanssen
- Department of Neurology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | | | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Peter Schramm
- Institute of Neuroradiology, University of Lübeck, Lübeck, Germany
| | - Dirk Rasche
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hanover, Niedersachsen, Germany
| | - Lars Büntjen
- Department of Neurology and Stereotactic Neurosurgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen Voges
- Department of Neurology and Stereotactic Neurosurgery, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Leibniz Institute of Neurobiology, Magdeburg, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hanover, Niedersachsen, Germany
| | - Thomas F Münte
- Department of Neurology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany .,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Alonso-Frech F, Fernandez-Garcia C, Gómez-Mayordomo V, Monje MHG, Delgado-Suarez C, Villanueva-Iza C, Catalan-Alonso MJ. Non-motor Adverse Effects Avoided by Directional Stimulation in Parkinson's Disease: A Case Report. Front Neurol 2022; 12:786166. [PMID: 35173666 PMCID: PMC8843015 DOI: 10.3389/fneur.2021.786166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Deep brain stimulation (DBS) is widely used for treatment of advanced, medication-refractory Parkinson's disease (PD). However, a significant proportion of patients may suffer adverse effects; up to 10% will present one or more transient or permanent neurobehavioral events. Patient and Methods In our case study, a 44-year-old woman diagnosed with PD 6 years previously who was suffering from motor fluctuations, dyskinesia, and freezing of gait episodes was submitted for DBS and implanted with directional electrodes. Intraoperative local field potentials (LFPs) were recorded. After surgery, conventional monopolar revision was performed. Preoperative 3T MRI studies and postoperative 3D and X-ray data were integrated using the Guide DTI software application (Brainlab), and diffusion tensor imaging tractography traced from cortical areas to each subthalamic nucleus (STN) using Elements software (Brainlab). Results We observed that left STN stimulation in the ring mode significantly improved motor symptoms, but the patient presented uncontrollable mirthful laughter. Stimulation was then switched to the directional mode; laughter remained when using the more posteromedial contact (3-C+) but not 2-C+ or 4-C+ at the same parameters. Interestingly, LFP recordings showed the highest beta-band activity over contacts 4 and 2, and very scarce beta power over contact 3. The orientation of the directional leads was selected based on the 3D postoperative X-rays. Associative fibers showed the shortest distance to contact number 3. Conclusion Stimulation of the STN can affect motor and associative loops. The use of directional electrodes is a good option to avoid not only undesirable capsular or lemniscal effects, but also limbic/associative events. Oscillatory activity in the beta range that preferentially takes place over the somatomotor STN region and is closely related to motor improvement, provides a reliable guide for optimizing the DBS programming. The importance of the exact location of electrical stimulation to determine the non-motor symptoms such as mood, apathy, attention, and memory, as well as the usefulness of biological markers such as LFP for optimal programming, is discussed in relation to this case.
Collapse
Affiliation(s)
- Fernando Alonso-Frech
- Department of Neurology, San Carlos Research Health Institute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- *Correspondence: Fernando Alonso-Frech
| | - Carla Fernandez-Garcia
- Department of Neurosurgery, San Carlos Research Health Institute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Carla Fernandez-Garcia
| | - Victor Gómez-Mayordomo
- Department of Neurology, San Carlos Research Health Institute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Mariana H. G. Monje
- Department of Neurology, San Carlos Research Health Institute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | | | - Clara Villanueva-Iza
- Department of Neurology, San Carlos Research Health Institute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Maria Jose Catalan-Alonso
- Department of Neurology, San Carlos Research Health Institute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
6
|
Lin Z, Zhang C, Li D, Sun B. Preoperative Levodopa Response and Deep Brain Stimulation Effects on Motor Outcomes in Parkinson's Disease: A Systematic Review. Mov Disord Clin Pract 2021; 9:140-155. [PMID: 35146054 DOI: 10.1002/mdc3.13379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Zhengyu Lin
- Department of Neurosurgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Center for Functional Neurosurgery Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Institute of Clinical Neuroscience Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Center for Functional Neurosurgery Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Institute of Clinical Neuroscience Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Research Center for Brain Science and Brain‐Inspired Intelligence Shanghai China
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Center for Functional Neurosurgery Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Institute of Clinical Neuroscience Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Center for Functional Neurosurgery Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Institute of Clinical Neuroscience Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
7
|
Eguchi K, Shirai S, Matsushima M, Kano T, Yamazaki K, Hamauchi S, Sasamori T, Seki T, Hirata K, Kitagawa M, Otsuki M, Shiga T, Houkin K, Sasaki H, Yabe I. Correlation of active contact location with weight gain after subthalamic nucleus deep brain stimulation: a case series. BMC Neurol 2021; 21:351. [PMID: 34517835 PMCID: PMC8436541 DOI: 10.1186/s12883-021-02383-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background Weight gain (WG) is a frequently reported side effect of subthalamic deep brain stimulation; however, the underlying mechanisms remain unclear. The active contact locations influence the clinical outcomes of subthalamic deep brain stimulation, but it is unclear whether WG is directly associated with the active contact locations. We aimed to determine whether WG is associated with the subthalamic deep brain stimulation active contact locations. Methods We enrolled 14 patients with Parkinson’s disease who underwent bilateral subthalamic deep brain stimulation between 2013 and 2019. Bodyweight and body mass index were measured before and one year following the surgery. The Lead-DBS Matlab toolbox was used to determine the active contact locations based on magnetic resonance imaging and computed tomography. We also created sweet spot maps for WG using voxel-wise statistics, based on volume of tissue activation and the WG of each patient. Fluorodeoxyglucose-positron emission tomography data were also acquired before and one year following surgery, and statistical parametric mapping was used to evaluate changes in brain metabolism. We examined which brain regions’ metabolism fluctuation significantly correlated with increased body mass index scores and positron emission tomography data. Results One year after surgery, the body mass index increase was 2.03 kg/m2. The sweet spots for WG were bilateral, mainly located dorsally outside of the subthalamic nucleus (STN). Furthermore, WG was correlated with increased metabolism in the left limbic and associative regions, including the middle temporal gyrus, inferior frontal gyrus, and orbital gyrus. Conclusions Although the mechanisms underlying WG following subthalamic deep brain stimulation are possibly multifactorial, our findings suggest that dorsal stimulation outside of STN may lead to WG. The metabolic changes in limbic and associative cortical regions after STN-DBS may also be one of the mechanisms underlying WG. Further studies are warranted to confirm whether dorsal stimulation outside of STN changes the activities of these cortical regions.
Collapse
Affiliation(s)
- Katsuki Eguchi
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan.
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Takahiro Kano
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Kazuyoshi Yamazaki
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Shuji Hamauchi
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Toru Sasamori
- Department of Neurosurgery, Sapporo Azabu Neurosurgical Hospital, Kita 22, Higashi 1, Higashi-ku, 065-0022, Sapporo, Japan
| | - Toshitaka Seki
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Mayumi Kitagawa
- Sapporo Teishinkai Hospital, Kita 33, Higashi 1, Higashi-ku, 065-0033, Sapporo, Japan
| | - Mika Otsuki
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, 060-8638, Sapporo, Japan
| |
Collapse
|
8
|
de Roquemaurel A, Wirth T, Vijiaratnam N, Ferreira F, Zrinzo L, Akram H, Foltynie T, Limousin P. Stimulation Sweet Spot in Subthalamic Deep Brain Stimulation - Myth or Reality? A Critical Review of Literature. Stereotact Funct Neurosurg 2021; 99:425-442. [PMID: 34120117 DOI: 10.1159/000516098] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION While deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been extensively used for more than 20 years in Parkinson's disease (PD), the optimal area of stimulation to relieve motor symptoms remains elusive. OBJECTIVE We aimed at localizing the sweet spot within the subthalamic region by performing a systematic review of the literature. METHOD PubMed database was searched for published studies exploring optimal stimulation location for STN DBS in PD, published between 2000 and 2019. A standardized assessment procedure based on methodological features was applied to select high-quality publications. Studies conducted more than 3 months after the DBS procedure, employing lateralized scores and/or stimulation condition, and reporting the volume of tissue activated or the position of the stimulating contact within the subthalamic region were considered in the final analysis. RESULTS Out of 439 references, 24 were finally retained, including 21 studies based on contact location and 3 studies based on volume of tissue activated (VTA). Most studies (all VTA-based studies and 13 of the 21 contact-based studies) suggest the superior-lateral STN and the adjacent white matter as the optimal sites for stimulation. Remaining contact-based studies were either inconclusive (5/21), favoured the caudal zona incerta (1/21), or suggested a better outcome of STN stimulation than adjacent white matter stimulation (2/21). CONCLUSION Using a standardized methodological approach, our review supports the presence of a sweet spot located within the supero-lateral STN and extending to the adjacent white matter.
Collapse
Affiliation(s)
- Alexis de Roquemaurel
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Thomas Wirth
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Neurology department, Strasbourg University Hospital, Strasbourg, France.,INSERM-U964/CNRS-UMR7104/University of Strasbourg, Illkirch-Graffenstaden, France
| | - Nirosen Vijiaratnam
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Francisca Ferreira
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Harith Akram
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
9
|
Subthalamic Nucleus Stimulation in Pediatric Isolated Dystonia: A 10-Year Follow-up. Can J Neurol Sci 2021; 47:328-335. [PMID: 32252836 DOI: 10.1017/cjn.2020.32] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To evaluate the short-term and long-term clinical effectiveness and safety of subthalamic nucleus deep brain stimulation (STN-DBS) for medically intractable pediatric isolated dystonia. METHODS Using a longitudinal retrospective design, we assessed the clinical outcomes of nine patients who underwent STN-DBS for treatment-refractory pediatric isolated dystonia one decade ago (mean age at surgery: 15.9 ± 4.5 years). The primary clinical outcome used was assessed by retrospective video analyses of patients' dystonia symptoms using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Clinical assessments were performed at baseline, 1-year follow-up (1-yr FU), and 10-year follow-up (10-yr FU). Adverse side effects, including surgery-related, device-related, and stimulation-related effects, were also documented. RESULTS After STN-DBS surgery, the mean improvement in the BFMDRS motor score was 77.1 ± 26.6% at 1-yr FU and 90.4 ± 10.4% at 10-yr FU. Similarly, the mean BFMDRS disability score was improved by 69.5 ± 13.6% at 1-yr FU and by 86.5 ± 13.9% at 10-yr FU. The clinical improvements gained at 10-yr FU were significantly larger than those observed at 1-yr FU. Negative correlations were found between the duration of disease to age at surgery ratio (DD/AS) and the improvements in the BFMDRS motor score and total score at 1-yr FU and 10-yr FU. CONCLUSION To our knowledge, this study provides the first clinical evidence for the short- and long-term effectiveness and safety of STN-DBS for pediatric isolated dystonia. Additionally, putative evidence is provided that earlier STN-DBS intervention in patients with refractory pediatric isolated dystonia may improve short- and long-term clinical outcomes.
Collapse
|
10
|
Ossowska K. Zona incerta as a therapeutic target in Parkinson's disease. J Neurol 2020; 267:591-606. [PMID: 31375987 PMCID: PMC7035310 DOI: 10.1007/s00415-019-09486-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
The zona incerta has recently become an important target for deep-brain stimulation (DBS) in Parkinson's disease (PD). The present review summarizes clinical, animal and anatomical data which have indicated an important role of this structure in PD, and discusses potential mechanisms involved in therapeutic effects of DBS. Animal studies have suggested initially some role of neurons as well as GABAergic and glutamatergic receptors of the zona incerta in locomotion and generation of PD signs. Anatomical data have indicated that thanks to its multiple interconnections with the basal ganglia, thalamus, cerebral cortex, brainstem, spinal cord and cerebellum, the zona incerta is an important link in a neuronal chain transmitting impulses involved in PD pathology. Finally, clinical studies have shown that DBS of this structure alleviates parkinsonian bradykinesia, muscle rigidity and tremor. DBS of caudal zona incerta seemed to be the most effective therapeutic intervention, especially with regard to reduction of PD tremor as well as other forms of tremor.
Collapse
Affiliation(s)
- Krystyna Ossowska
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
| |
Collapse
|
11
|
Steinhardt J, Münte TF, Schmid SM, Wilms B, Brüggemann N. A systematic review of body mass gain after deep brain stimulation of the subthalamic nucleus in patients with Parkinson's disease. Obes Rev 2020; 21:e12955. [PMID: 31823457 DOI: 10.1111/obr.12955] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
Abstract
This systematic review investigated the effects of deep brain stimulation of the subthalamic nucleus on extent and time course of body mass changes in patients with Parkinson's disease. A computerized search identified relevant articles using a priori defined inclusion and exclusion criteria. A descriptive analysis was calculated for the main outcome parameters body mass and BMI. Thirty-eight out of 206 studies fulfilled the inclusion criteria (979 patients aged 59.0±7.5 years). Considering the longest follow-up time for each study, body mass and BMI showed a mean increase across studies of +5.71kg (p < .0001; d = 0.64) and +1.8kg/m2 (p < .0001; d = 1.61). The time course of body mass gain revealed a continuous increase ranging from +3.25kg (d = 0.69) at 3 months, +3.88kg (d = 0.21) at 6 months, +6.35kg (d = 0.72) at 12 months, and +6.11kg (d = 1.02) greater than 12 months. Changes in BMI were associated with changes in disease severity (r = 0.502, p = .010) and pharmacological treatment (r = 0.440, p = .0231). Data suggest that body mass gain is one of the most common side effects of deep brain stimulation going beyond normalization of preoperative weight loss. Considering the negative health implications of overweight, we recommend the development of tailored therapies to prevent overweight and associated metabolic disorders following this treatment.
Collapse
Affiliation(s)
- Julia Steinhardt
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Department of Internal Medicine, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Sebastian M Schmid
- Institute of Psychology II, University of Lübeck, Lübeck, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Britta Wilms
- Institute of Psychology II, University of Lübeck, Lübeck, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Serranová T, Sieger T, Růžička F, Bakštein E, Dušek P, Vostatek P, Novák D, Růžička E, Urgošík D, Jech R. Topography of emotional valence and arousal within the motor part of the subthalamic nucleus in Parkinson's disease. Sci Rep 2019; 9:19924. [PMID: 31882633 PMCID: PMC6934686 DOI: 10.1038/s41598-019-56260-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 12/02/2019] [Indexed: 01/24/2023] Open
Abstract
Clinical motor and non-motor effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD) seem to depend on the stimulation site within the STN. We analysed the effects of the position of the stimulation electrode within the motor STN on subjective emotional experience, expressed as emotional valence and arousal ratings to pictures representing primary rewards and aversive fearful stimuli in 20 PD patients. Patients' ratings from both aversive and erotic stimuli matched the mean ratings from a group of 20 control subjects at similar position within the STN. Patients with electrodes located more posteriorly reported both valence and arousal ratings from both the rewarding and aversive pictures as more extreme. Moreover, posterior electrode positions were associated with a higher occurrence of depression at a long-term follow-up. This brain-behavior relationship suggests a complex emotion topography in the motor part of the STN. Both valence and arousal representations overlapped and were uniformly arranged anterior-posteriorly in a gradient-like manner, suggesting a specific spatial organization needed for the coding of the motivational salience of the stimuli. This finding is relevant for our understanding of neuropsychiatric side effects in STN DBS and potentially for optimal electrode placement.
Collapse
Affiliation(s)
- Tereza Serranová
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic.
| | - Tomáš Sieger
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic.,Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Roentgenova 2, 150 30, Prague, Czech Republic
| | - Eduard Bakštein
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic.,National Institute of Mental Health, Klecany, Topolová 748, 250 67, Czech Republic
| | - Petr Dušek
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic
| | - Pavel Vostatek
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic
| | - Daniel Novák
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic
| | - Dušan Urgošík
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Roentgenova 2, 150 30, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Roentgenova 2, 150 30, Prague, Czech Republic
| |
Collapse
|
13
|
Kern DS, Picillo M, Thompson JA, Sammartino F, di Biase L, Munhoz RP, Fasano A. Interleaving Stimulation in Parkinson's Disease, Tremor, and Dystonia. Stereotact Funct Neurosurg 2019; 96:379-391. [PMID: 30654368 DOI: 10.1159/000494983] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/24/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Interleaving stimulation (ILS) in deep brain stimulation (DBS) provides individualized stimulation of 2 contacts delivered in alternating order. Currently, limited information on the utility of ILS exists. The aims of this study were to determine the practical applications and outcomes of ILS DBS in Parkinson's disease (PD), tremor, and dystonia. METHODS We performed a single-center, unblinded, retrospective chart review of all patients with DBS attempted on ILS at our referral center assessing for rationale and outcomes. RESULTS Fifty patients (PD, n = 27; tremor, n = 7; dystonia, n = 16 patients) tried ILS for 2 rationales: management of adverse effects (n = 29) and to improve clinical efficacy (n = 21). A total of 19 patients demonstrated improvement with ILS for adverse effect management predominately for the treatment of dyskinesias (n = 12). In the vast majority of dyskinetic patients, a contact added into the rostral zona incerta with ILS was performed. Nine out of 21 patients demonstrated improved clinical efficacy with ILS with all 6 PD patients who tried ILS for this rationale demonstrating benefit. CONCLUSIONS In PD, ILS provided benefits for dyskinesias and parkinsonism, with minimal improvement of other adverse effects. In tremor and dystonia, marginal effects in terms of mitigation of adverse effects and improvement of clinical outcomes were evident.
Collapse
Affiliation(s)
- Drew S Kern
- Movement Disorders Center, Department of Neurology, University of Colorado, Denver, Colorado, USA, .,Movement Disorders Center, Department of Neurosurgery, University of Colorado, Denver, Colorado, USA,
| | - Marina Picillo
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine and Surgery, Neuroscience Section, University of Salerno, Salerno, Italy
| | - John A Thompson
- Movement Disorders Center, Department of Neurosurgery, University of Colorado, Denver, Colorado, USA
| | - Francesco Sammartino
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Lazzaro di Biase
- Neurology Unit, Campus Bio-Medico University, Rome, Italy.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Renato P Munhoz
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Planche V, Munsch F, Pereira B, de Schlichting E, Vidal T, Coste J, Morand D, de Chazeron I, Derost P, Debilly B, Llorca PM, Lemaire JJ, Marques A, Durif F. Anatomical predictors of cognitive decline after subthalamic stimulation in Parkinson's disease. Brain Struct Funct 2018; 223:3063-3072. [PMID: 29736590 DOI: 10.1007/s00429-018-1677-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
We investigated whether pre-operative MRI measures of focal brain atrophy could predict cognitive decline occurring after deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson's disease (PD). For that purpose, we prospectively collected data of 42 consecutive patients with PD who underwent bilateral STN-DBS. Normalized brain structure volumes and cortical thicknesses were measured on pre-operative T1-weighted MRI. Patients were tested for their cognitive performances before surgery and 1 year after. After controlling for age, gender, pre-operative disease severity, change in dopaminomimetic dose after surgery and contact location, we found correlations: (1) between the variation of the total Mattis dementia rating scale (MDRS) score and left lateral ventricle volume (p = 0.032), (2) between the variation of the initiation/perseveration subscore of the MDRS and the left nucleus accumbens volume (p = 0.042) and the left lateral ventricle volume (p = 0.017) and (3) between the variation of the backward digit-span task and the right and left superior frontal gyrus thickness (p = 0.004 and p = 0.007, respectively). Left nucleus accumbens atrophy was associated with decline in the initiation/perseveration subscore with the largest effect size (d = - 1.64). Pre-operative left nucleus accumbens volume strongly predicted postoperative decline in the initiation/attention subscore (AUC = 0.92, p < 0.001, 96.3% sensitivity, 80.0% specificity, 92.9% PPV and 92.9% NPV). We conclude that the morphometric measures of brain atrophy usually associated with cognitive impairment in PD can also explain or predict a part of cognitive decline after bilateral STN-DBS. In particular, the left accumbens nucleus volume could be considered as a promising marker for guiding surgical decisions.
Collapse
Affiliation(s)
- Vincent Planche
- Service de Neurologie, CHU Clermont-Ferrand, Université Clermont Auvergne, 58 rue Montalembert, 63000, Clermont-Ferrand, France.
| | - Fanny Munsch
- Service de Neuroradiologie diagnostique et thérapeutique, CHU Bordeaux, Université Bordeaux, 33000, Bordeaux, France
| | - Bruno Pereira
- Unité de Biostatistiques, Direction à la Recherche Clinique et à l'Innovation (DRCI), CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Emmanuel de Schlichting
- Service de Neurochirurgie, CHU Clermont-Ferrand, Centre National de la Recherche Scientifique (CNRS), Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Tiphaine Vidal
- Centre Mémoire de Ressources et de Recherche (CMRR), CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Jerome Coste
- Service de Neurochirurgie, CHU Clermont-Ferrand, Centre National de la Recherche Scientifique (CNRS), Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Dominique Morand
- Unité de Biostatistiques, Direction à la Recherche Clinique et à l'Innovation (DRCI), CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Ingrid de Chazeron
- Centre Médico-Psychologique B (CMP-B), CHU Clermont-Ferrand, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Philippe Derost
- Service de Neurologie, CHU Clermont-Ferrand, Université Clermont Auvergne, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| | - Bérangère Debilly
- Service de Neurologie, CHU Clermont-Ferrand, Université Clermont Auvergne, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| | - Pierre-Michel Llorca
- Centre Médico-Psychologique B (CMP-B), CHU Clermont-Ferrand, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Service de Neurochirurgie, CHU Clermont-Ferrand, Centre National de la Recherche Scientifique (CNRS), Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Ana Marques
- Service de Neurologie, CHU Clermont-Ferrand, Université Clermont Auvergne, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| | - Franck Durif
- Service de Neurologie, CHU Clermont-Ferrand, Université Clermont Auvergne, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| |
Collapse
|
15
|
Topographic anatomy of the subthalamic nucleus localized by high-resolution human brain atlas superimposing digital images of cross-sectioned surfaces and histological images of microscopic sections from frozen cadaveric brains. J Clin Neurosci 2018; 53:193-202. [PMID: 29739727 DOI: 10.1016/j.jocn.2018.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/09/2018] [Indexed: 11/22/2022]
Abstract
Despite the recent advent of neuro-radiographic techniques, creating a 'perfect' human brain atlas providing precise and consistent images with minimal distortion is practically difficult. In this study, we created a new human brain atlas from cadaveric brains with serial sections of 50 μm thickness covering the entire basal ganglia. Human cerebral hemispheres were obtained from 10 donated cadavers and fixed in 10% formalin solution, cut in a block measuring 50 mm × 30 mm × 50 mm around the midpoint of the anterior and posterior commissures and frozen at -40 °C. Each block was cut into 50-μm-thick sections on the freezing microtome and the cross-sectioned surface was photographed. Simultaneously, every 10th slice from one sagittal hemisphere was sampled and stained using the Kluver-Barrera method. Prepared slides were photographed under light microscopy, and data from digital images of the cross-sectioned surface (DICSS) and digital images from microscopic sections (DIMS) were processed. Gray areas on DICSS largely represented areas of dense cellularity, and around subthalamic nucleus (STN), the zona incerta and field of Forel were clearly distinguishable on the anterosuperior side, as was the substantia nigra on the caudal side. DICSS successfully delineated the anatomical structure identical to the STN and surrounding contiguous nuclei. This new brain atlas will allow elucidation of anatomy that cannot be clearly disclosed from modern radiographic imaging or is very difficult to analyze with spatially inconsistent histological sections, and will contribute to further progress in anatomical studies of the human basal ganglia.
Collapse
|
16
|
Dafsari HS, Petry-Schmelzer JN, Ray-Chaudhuri K, Ashkan K, Weis L, Dembek TA, Samuel M, Rizos A, Silverdale M, Barbe MT, Fink GR, Evans J, Martinez-Martin P, Antonini A, Visser-Vandewalle V, Timmermann L. Non-motor outcomes of subthalamic stimulation in Parkinson's disease depend on location of active contacts. Brain Stimul 2018; 11:904-912. [PMID: 29655586 DOI: 10.1016/j.brs.2018.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in Parkinson's disease (PD). Few studies have investigated the influence of the location of neurostimulation on NMS. OBJECTIVE To investigate the impact of active contact location on NMS in STN-DBS in PD. METHODS In this prospective, open-label, multicenter study including 50 PD patients undergoing bilateral STN-DBS, we collected NMSScale (NMSS), NMSQuestionnaire (NMSQ), Hospital Anxiety and Depression Scale (anxiety/depression, HADS-A/-D), PDQuestionnaire-8 (PDQ-8), Scales for Outcomes in PD-motor examination, motor complications, activities of daily living (ADL), and levodopa equivalent daily dose (LEDD) preoperatively and at 6 months follow-up. Changes were analyzed with Wilcoxon signed-rank/t-test and Bonferroni-correction for multiple comparisons. Although the STN was targeted visually, we employed an atlas-based approach to explore the relationship between active contact locations and DBS outcomes. Based on fused MRI/CT-images, we identified Cartesian coordinates of active contacts with patient-specific Mai-atlas standardization. We computed linear mixed-effects models with x-/y-/z-coordinates as independent, hemispheres as within-subject, and test change scores as dependent variables. RESULTS NMSS, NMSQ, PDQ-8, motor examination, complications, and LEDD significantly improved at follow-up. Linear mixed-effect models showed that NMS and QoL improvement significantly depended on more medial (HADS-D, NMSS), anterior (HADS-D, NMSQ, PDQ-8), and ventral (HADS-A/-D, NMSS, PDQ-8) neurostimulation. ADL improved more in posterior, LEDD in lateral neurostimulation locations. No relationship was observed for motor examination and complications scores. CONCLUSIONS Our study provides evidence that more anterior, medial, and ventral STN-DBS is significantly related to more beneficial non-motor outcomes.
Collapse
Affiliation(s)
- Haidar Salimi Dafsari
- Department of Neurology, University Hospital Cologne, Cologne, Germany; National Parkinson Foundation International Centre of Excellence, King's College Hospital, London, United Kingdom.
| | | | - K Ray-Chaudhuri
- National Parkinson Foundation International Centre of Excellence, King's College Hospital, London, United Kingdom; The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Keyoumars Ashkan
- National Parkinson Foundation International Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Luca Weis
- Department of Neurology, IRCCS, San Camillo, Venice, Italy
| | - Till A Dembek
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Michael Samuel
- National Parkinson Foundation International Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Alexandra Rizos
- National Parkinson Foundation International Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Monty Silverdale
- Department of Neurology and Neurosurgery, Salford Royal Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Greater Manchester, United Kingdom
| | - Michael T Barbe
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Julian Evans
- Department of Neurology, IRCCS, San Camillo, Venice, Italy
| | - Pablo Martinez-Martin
- National Center of Epidemiology and CIBERNED, Carlos III Institute of Health, Madrid, Spain
| | | | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Department of Neurology, University Hospital Giessen and Marburg, Campus Marburg, Germany
| | | | | |
Collapse
|
17
|
Weight gain after subthalamic nucleus deep brain stimulation in Parkinson’s disease is influenced by dyskinesias’ reduction and electrodes’ position. Neurol Sci 2017; 38:2123-2129. [DOI: 10.1007/s10072-017-3102-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
|
18
|
Deep brain stimulation for childhood dystonia: Is 'where' as important as in 'whom'? Eur J Paediatr Neurol 2017; 21:176-184. [PMID: 28220756 DOI: 10.1016/j.ejpn.2016.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/03/2016] [Indexed: 01/07/2023]
Abstract
Deep brain stimulation (DBS) has become a mainstay of dystonia management in adulthood. Typically targeting electrode placement in the GPi, sustained improvement in dystonic symptoms are anticipated in adults with isolated genetic dystonias. Dystonia in childhood is more commonly a symptomatic condition, with dystonia frequently expressed on the background of a structurally abnormal brain. Outcomes following DBS in this setting are much more variable, the reasons for which have yet to be elucidated. Much of the focus on improving outcomes following DBS in dystonia management has been on the importance of patient selection, with, until recently, little discussion of the choice of target. In this review, we advance the argument that patient selection for DBS in childhood cannot be made separate from the choice of target nuclei. The anatomy of common DBS targets is considered, and factors influencing their choice for electrode insertion are discussed. We propose an "ABC" for DBS in childhood dystonia is proposed: Appropriate Child selected; Best nuclei chosen for electrode insertion; Correct position within that nucleus.
Collapse
|