1
|
Fu S, Yang Z, He X, Liu D, Yang Z, Zhang J, Du L. Long-term Efficacy of Bilateral Globus Pallidus Stimulation in the Treatment of Meige Syndrome. Neuromodulation 2025; 28:532-544. [PMID: 38597859 DOI: 10.1016/j.neurom.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVE This study aimed to investigate the long-term efficacy and prognosis of bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) in patients with benign essential blepharospasm (BEB) and complete Meige syndrome, and to search for the best therapeutic subregion within the GPi. MATERIALS AND METHODS Data were collected for 36 patients with Meige syndrome who underwent bilateral GPi-DBS surgery at our hospital between March 2014 and February 2022. Using the Burk-Fahn-Marsden Dystonia Rating Scale (BFMDRS)-Movement (BFMDRS-M) and BFMDRS-Disability (BFMDRS-D), the severity of the symptoms of patients with complete Meige syndrome was evaluated before surgery and at specific time points after surgery. Patients with BEB were clinically evaluated for the severity of blepharospasm using BFMDRS-M, the Blepharospasm Disability Index (BDI), and Jankovic Rating Scale (JRS). Three-dimensional reconstruction of the GPi-electrode was performed in some patients using the lead-DBS software, and the correlation between GPi subregion volume of tissue activated (VTA) and symptom improvement was analyzed in patients six months after surgery. The follow-up duration ranged from six to 99 months. RESULTS Compared with preoperative scores, the results of all patients at six months after surgery and final follow-up showed a significant decrease (p < 0.05) in the mean BFMDRS-M score. Among them, the average BFMDRS-M improvement rates in patients with BEB at six months after surgery and final follow-up were 60.3% and 69.7%, respectively, whereas those in patients with complete Meige syndrome were 54.5% and 58.3%, respectively. The average JRS and BDI scores of patients with BEB also decreased significantly (p < 0.05) at six months after surgery and at the final follow-up (JRS improvement: 38.6% and 49.1%, respectively; BDI improvement: 42.6% and 57.4%, respectively). We were unable to identify significantly correlated prognostic factors. There was a significant correlation between GPi occipital VTA and symptom improvement in patients at six months after surgery (r = 0.34, p = 0.025). CONCLUSIONS Our study suggests that bilateral GPi-DBS is an effective treatment for Meige syndrome, with no serious postoperative complications. The VTA in the GPi subregion may be related to the movement score improvement. In addition, further research is needed to predict patients with poor surgical outcomes.
Collapse
|
2
|
Butenko K, Neudorfer C, Dembek TA, Hollunder B, Meyer GM, Li N, Oxenford S, Bahners BH, Al-Fatly B, Lofredi R, Gordon EM, Dosenbach NUF, Ganos C, Hallett M, Jinnah HA, Starr PA, Ostrem JL, Wu Y, Zhang C, Fox MD, Horn A. Engaging dystonia networks with subthalamic stimulation. Proc Natl Acad Sci U S A 2025; 122:e2417617122. [PMID: 39773021 PMCID: PMC11745339 DOI: 10.1073/pnas.2417617122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Deep brain stimulation is an efficacious treatment for dystonia. While the internal pallidum serves as the primary target, recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its surroundings have not been studied in depth. Indeed, historical targets that have been used for surgical treatment of dystonia are directly adjacent to the STN. Further, multiple types of dystonia exist, and outcomes are variable, suggesting that not all types would profit maximally from the same target. Therefore, a thorough investigation of neural substrates underlying stimulation effects on dystonia signs and symptoms is warranted. Here, we analyze a multicenter cohort of isolated dystonia patients with subthalamic implantations (N = 58) and relate their stimulation sites to improvements of appendicular and cervical symptoms as well as blepharospasm. Stimulation of the ventral oral posterior nucleus of thalamus and surrounding regions were associated with improvements in cervical dystonia, while stimulation of the dorsolateral STN was associated with improvements in limb dystonia and blepharospasm. This dissociation was matched by structural connectivity analysis, where the cerebellothalamic, corticospinal, and pallidosubthalamic tracts were associated with improvements of cervical dystonia, while hyperdirect and subthalamopallidal pathways with alleviation of limb dystonia and blepharospasm. On the level of functional networks, improvements of limb dystonia were associated with connectivity to the corresponding somatotopic regions in the primary motor cortex, while alleviation of cervical dystonia to the cingulo-opercular network. These findings shed light on the pathophysiology of dystonia and may guide DBS targeting and programming in the future.
Collapse
Affiliation(s)
- Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Till A. Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne50937, Germany
| | - Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
- Einstein Center for Neurosciences Berlin, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
- Berlin School of Mind and Brain, Humboldt—Universität zu Berlin, Berlin10117, Germany
| | - Garance M. Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
| | - Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
| | - Bahne H. Bahners
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA02115
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf40225, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf40225, Germany
| | - Bassam Al-Fatly
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
| | - Roxanne Lofredi
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
| | - Evan M. Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
| | - Nico U. F. Dosenbach
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurology, Washington University School of Medicine, St. Louis, MO63108
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Christos Ganos
- Movement Disorder Clinic, Edmond J. Safra Program in Parkinson’s Disease, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, ONM5T 2S6, Canada
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | | | - Philip A. Starr
- Department of Neurological Surgery, University of California, San Francisco, CA94143
| | - Jill L. Ostrem
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California, San Francisco, CA94143
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200025, China
| | - ChenCheng Zhang
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200025, China
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
- Einstein Center for Neurosciences Berlin, Charité—Universitätsmedizin Berlin, Berlin10117, Germany
| |
Collapse
|
3
|
Hao QP, Zheng WT, Zhang ZH, Ding H, Qin GB, Liu YZ, Tan Y, Liu Z, Liu RE. Deep brain stimulation and pallidotomy in primary Meige syndrome: a prospective cohort study. Neurol Sci 2025; 46:207-217. [PMID: 39266808 DOI: 10.1007/s10072-024-07752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Primary Meige syndrome (PMS) is a rare form of dystonia, and comparative analysis of globus pallidus internal deep brain stimulation (GPi-DBS), subthalamic nucleus deep brain stimulation (STN-DBS), and pallidotomy has been lacking. This study aims to compare the efficacy, safety, and psychiatric features of GPi-DBS, STN-DBS, and pallidotomy in patients with PMS. METHODS This prospective cohort study was divided into three groups: GPi-DBS, STN-DBS, and pallidotomy. Clinical assessments, including motor and non-motor domains, were evaluated at baseline and at 1 year and 3 years after neurostimulation/surgery. RESULTS Ninety-eight patients were recruited: 46 patients received GPi-DBS, 34 received STN-DBS, and 18 underwent pallidotomy. In the GPi-DBS group, the movement score of the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) improved from a mean (SE) of 13.8 (1.0) before surgery to 5.0 (0.7) (95% CI, -10.5 to -7.1; P < 0.001) at 3 years. Similarly, in the STN-DBS group, the mean (SE) score improved from 13.2 (0.8) to 3.5 (0.5) (95% CI, -10.3 to -8.1; P < 0.001) at 3 years, and in the pallidotomy group, it improved from 14.9 (1.3) to 6.0 (1.1) (95% CI, -11.3 to -6.5; P < 0.001) at 3 years. They were comparable therapeutic approaches for PMS that can improve motor function and quality of life without non-motor side effects. CONCLUSIONS DBS and pallidotomy are safe and effective treatments for PMS, and an in-depth exploration of non-motor symptoms may be a new entry point for gaining a comprehensive understanding of the pathophysiology.
Collapse
Affiliation(s)
- Qing-Pei Hao
- Department of Neurosurgery, Peking University People's Hospital, Xizhimen South Street, Xicheng DistrictBeijing, 100044, China
| | - Wen-Tao Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zi-Hao Zhang
- Department of Neurosurgery, Peking University People's Hospital, Xizhimen South Street, Xicheng DistrictBeijing, 100044, China
| | - Hu Ding
- Department of Neurosurgery, Peking University People's Hospital, Xizhimen South Street, Xicheng DistrictBeijing, 100044, China
| | - Guang-Biao Qin
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Ye-Zu Liu
- Department of Psychology, Peking University People's Hospital, Beijing, China
| | - Yao Tan
- Clinical Research Institute, Peking University, Beijing, China
| | - Zhi Liu
- Department of Neurosurgery, Peking University People's Hospital, Xizhimen South Street, Xicheng DistrictBeijing, 100044, China.
- Functional Neurosurgery Research Center, Peking University Health Science Center, Haidian District, Xueyuan Road, BeijingBeijing, 100191, No. 38, China.
| | - Ru-En Liu
- Department of Neurosurgery, Peking University People's Hospital, Xizhimen South Street, Xicheng DistrictBeijing, 100044, China.
- Functional Neurosurgery Research Center, Peking University Health Science Center, Haidian District, Xueyuan Road, BeijingBeijing, 100191, No. 38, China.
| |
Collapse
|
4
|
Wadhwa A, Pacheco-Barrios N, Tripathy S, Jha R, Wadhwa M, Warren AEL, Luo L, Rolston JD. The effects of deep brain stimulation on sleep: a systematic review and meta-analysis. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae079. [PMID: 39525613 PMCID: PMC11543990 DOI: 10.1093/sleepadvances/zpae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Background Deep brain stimulation (DBS) is a standard treatment for movement disorders, epilepsy, and others, yet its influence on postprocedural sleep quality remains an under-researched topic. Study Objectives We performed a systematic review and meta-analysis of all DBS effects on sleep. Methods The use of preferred reporting items for systematic reviews and meta-analyses guidelines (PRISMA) was utilized. We extracted demographic data, disease type/duration, DBS target, stimulation laterality (unilateral vs bilateral), follow-up lengths, and sleep pre/post-op measurements with polysomnography or across four standard sleep scales. The Cochrane methodology for evaluating RCTs was employed using the risk of bias assessments, data synthesis, and statistical methods, including forest plots (risk ratio; M-H random effects; 95% CI). Results Sixty-three studies were included in the overall analysis, representing 3022 patients. In a subgroup meta-analysis of subthalamic nucleus (STN) DBS for Parkinson's disease (PD), patients showed significant sleep improvement at three but not 12 months postoperatively with PDSS, at 12 but not 3 months with Epworth sleep scale, and at 6 months with nonmotor symptom scale. Pittsburgh sleep quality index (PSQI) showed no significant improvement in sleep at any time. Bilateral DBS showed significantly more improvement than unilateral DBS in the PSQI at 6 but not 3 months. Polysomnography showed significant sleep improvement at 1 week but not at 3 or 6 months. Most studies showed no significant sleep improvement for globus pallidus internus, centromedian thalamus, and ventral intermediate nucleus DBS. Conclusions STN-DBS for PD likely improves sleep; however, significant standardization in sleep scale outcome reporting and follow-up time is needed to effectively determine the target-dependent effects of DBS surgery on sleep.
Collapse
Affiliation(s)
- Aryan Wadhwa
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Niels Pacheco-Barrios
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Carrera de Medicina Humana, Universidad Científica del Sur, Lima, Peru
| | - Shreya Tripathy
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rohan Jha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Millen Wadhwa
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron E L Warren
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lan Luo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Ying T, Wang H, Tang Y, Zhao H, Cai X, Shen Y, Wang B, Zhu W, Zhou P, Zhang X, Zhong J, Wang X, Fu X, Zhu J, Zhang W, Li S. Management of Meige syndrome with bilateral trigeminal and facial nerves combing. Front Neurol 2024; 15:1410531. [PMID: 39211814 PMCID: PMC11358068 DOI: 10.3389/fneur.2024.1410531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Meige syndrome (MS) is an adult-onset segmental dystonia for which no satisfactory remedy currently exists. Our team developed a novel surgical approach called bilateral trigeminal/facial nerve combing (BTFC). This study aimed to evaluate the outcomes of patients who underwent BFTC (Clinical Trial Registry Number: ChiCTR2000033481). Method We assigned 22 patients with MS to undergo BTFC. The primary outcome was assessed using the movement subscale of the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS-M) at 12 months postoperatively. The second outcome was evaluated using the Medical Outcome Study (MOS) 36-item Short Form Health Survey (SF-36), the dysfunction subscale of the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS-D), and the sub-item scores of the BFMDRS-M. Safety outcomes included the House-Brackmann (HB) functional grading score and the visual analog scale (VAS) for facial numbness. Results At the final follow-up at 12 months, the BFMDRS-M showed a mean improvement of 70.7% from baseline. Mean scores of the BFMDRS-M sub-motor (including the eyes, mouth, and speech/swallowing) improved by 65.6, 81.00, and 60%, respectively. The median score of the total BFMDRS-D score was 0.70 ± 1.17 compared with 1.86 ± 2.21 at baseline. There were no serious operative complications in this population. The quality of life of the patients significantly improved (P < 0.05). Conclusion BFTC has proven to be effective in relieving the symptoms of Meige syndrome. This novel surgical approach offers a new alternative treatment for patients who have failed to respond to medications, botulinum toxin injections, and deep brain stimulation (DBS). Clinical Trial Registration https://www.chictr.org.cn/bin/project/edit?pid=54567, ChiCTR2000033481.
Collapse
Affiliation(s)
- Tingting Ying
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| | - Haopeng Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yinda Tang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Zhao
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomin Cai
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yiman Shen
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| | - Baimiao Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| | - Wanchun Zhu
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Zhou
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zhang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhong
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Jin Zhu
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| | - Weituo Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Cranial Nerve Disease Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Butenko K, Neudorfer C, Dembek TA, Hollunder B, Meyer GM, Li N, Oxenford S, Bahners BH, Al-Fatly B, Lofredi R, Gordon EM, Dosenbach NUF, Ganos C, Hallett M, Starr PA, Ostrem JL, Wu Y, Zhang C, Fox MD, Horn A. Engaging dystonia networks with subthalamic stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307896. [PMID: 38903109 PMCID: PMC11188120 DOI: 10.1101/2024.05.24.24307896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Deep brain stimulation is a viable and efficacious treatment option for dystonia. While the internal pallidum serves as the primary target, more recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its complex surroundings have not been studied in depth. Indeed, multiple historical targets that have been used for surgical treatment of dystonia are directly adjacent to the STN. Further, multiple types of dystonia exist, and outcomes are variable, suggesting that not all types would profit maximally from the exact same target. Therefore, a thorough investigation of the neural substrates underlying effects on dystonia symptoms is warranted. Here, we analyze a multi-center cohort of isolated dystonia patients with subthalamic implantations (N = 58) and relate their stimulation sites to improvement of appendicular and cervical symptoms as well as blepharospasm. Stimulation of the ventral oral posterior nucleus of thalamus and surrounding regions was associated with improvement in cervical dystonia, while stimulation of the dorsolateral STN was associated with improvement in limb dystonia and blepharospasm. This dissociation was also evident for structural connectivity, where the cerebellothalamic, corticospinal and pallidosubthalamic tracts were associated with improvement of cervical dystonia, while hyperdirect and subthalamopallidal pathways were associated with alleviation of limb dystonia and blepharospasm. Importantly, a single well-placed electrode may reach the three optimal target sites. On the level of functional networks, improvement of limb dystonia was correlated with connectivity to the corresponding somatotopic regions in primary motor cortex, while alleviation of cervical dystonia was correlated with connectivity to the recently described 'action-mode' network that involves supplementary motor and premotor cortex. Our findings suggest that different types of dystonia symptoms are modulated via distinct networks. Namely, appendicular dystonia and blepharospasm are improved with modulation of the basal ganglia, and, in particular, the subthalamic circuitry, including projections from the primary motor cortex. In contrast, cervical dystonia was more responsive when engaging the cerebello-thalamo-cortical circuit, including direct stimulation of ventral thalamic nuclei. These findings may inform DBS targeting and image-based programming strategies for patient-specific treatment of dystonia.
Collapse
Affiliation(s)
- Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bahne H Bahners
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Bassam Al-Fatly
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roxanne Lofredi
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nico U F Dosenbach
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Christos Ganos
- Movement Disorder Clinic, Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jill L Ostrem
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California, San Francisco, CA, USA
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - ChenCheng Zhang
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiaotong University Schools of Medicine, Shanghai, China
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Chadha Y, Toshniwal S, Patil R. Diagnostic Dilemma: Unraveling Meige Disorder Mistaken for Functional Neurological Disorder. Cureus 2024; 16:e61465. [PMID: 38953076 PMCID: PMC11215230 DOI: 10.7759/cureus.61465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Meige syndrome, a rare form of cranial dystonia, manifests as involuntary spasms affecting the facial and neck muscles. Diagnosing Meige syndrome is challenging due to its similarities with various movement disorders and psychiatric conditions. Functional neurological disorder (FND) refers to a condition characterized by neurological symptoms that are inconsistent with recognized neurological or medical conditions. Symptoms may include motor or sensory disturbances such as weakness, tremors, paralysis, or seizures. Importantly, these symptoms cannot be fully explained by another medical condition or by the direct effects of a substance. Instead, they are believed to stem from psychological factors. This case demonstrates the diagnostic dilemma of Meige syndrome. It was initially misdiagnosed as a functional neurological disorder in a 42-year-old female. The difficulties in differentiating between these disorders highlight the necessity of a thorough evaluation and increased clinical suspicion in cases of movement disorders. For treatment outcomes to be optimized and to resolve patient distress, prompt and accurate diagnosis is essential.
Collapse
Affiliation(s)
- Yatika Chadha
- Psychiatry, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| | - Saket Toshniwal
- General Medicine, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| | - Ragini Patil
- Psychiatry, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| |
Collapse
|
8
|
Duarte A, Coutinho L, Germiniani FMB, Teive HAG. Effects of onabotulinum toxin type A injections in patients with Meige's syndrome. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-7. [PMID: 38641339 PMCID: PMC11031253 DOI: 10.1055/s-0044-1785691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/07/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Meige's syndrome is a type of facial dystonia characterized by the simultaneous occurrence of blepharospasm and oromandibular dystonia. Although botulinum toxin type A (OBTA) injections are the standard treatment, evidence of their effectiveness and safety in this scenario is still lacking. OBJECTIVE Our research aimed to evaluate the improvement and occurrence of side effects following injections of onabotulinum toxin type A (OBTA) in patients with Meige's syndrome. METHODS Patients with Meige's syndrome undergoing botulinum toxin injections were enrolled in this study. We assessed dystonia intensity before and 14 days after OBTA injection using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) to measure the response of symptoms in the eyes (blepharospasm) and mouth (oromandibular dystonia). Other variables, such as dosage, side effects, and demographic data, were also recorded. RESULTS The study included 41 participants, with a mean age of 67.7 years and a female-to-male ratio of 3.5:1. The mean BFMDRS score before the injections was 8.89, and after 14 days, it was 2.88. The most reported side effect was ptosis, with a 7.3% incidence. OBTA significantly reduced dystonia severity (p < 0.0001). The clinical response for the blepharospasm component was superior to the oromandibular dystonia component. CONCLUSION Our results support that OBTA seems to be an effective and safe therapeutic option for treating Meige's syndrome. The effect of OBTA was more pronounced in the treatment of blepharospasm than in oromandibular dystonia.
Collapse
Affiliation(s)
- Alexia Duarte
- Universidade Federal do Paraná, Setor de Ciências da Saúde, Curitiba PR, Brazil.
| | - Léo Coutinho
- Universidade Federal do Paraná, Programa de Pós-Graduação em Medicina Interna, Curitiba PR, Brazil.
| | | | - Hélio Afonso Ghizoni Teive
- Universidade Federal do Paraná, Setor de Ciências da Saúde, Curitiba PR, Brazil.
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Setor de Neurologia, Curitiba PR, Brazil.
| |
Collapse
|
9
|
Wu X, Xue T, Pan S, Xing W, Huang C, Zhang J, Zhao G. Pallidal versus subthalamic deep brain stimulation for Meige syndrome: A systematic review and meta-analysis. Heliyon 2024; 10:e27945. [PMID: 38510025 PMCID: PMC10950702 DOI: 10.1016/j.heliyon.2024.e27945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Background Globus pallidus internus (GPi) and subthalamic nucleus (STN) are two common deep brain stimulation (DBS) targets. This meta-analysis was to compared the efficacy and safety of these two DBS targets for the treatment of Meige syndrome (MS). Methods A systematic search was performed using EMBASE, MEDLINE, the Cochrane Library, and ClinicalTrials.gov to identify DBS trials for MS. Review Manager 5.3 was used to perform meta-analysis and the mean difference (MD) was analyzed and calculated with a random effect model. Pearson's correlation coefficients and meta-regression analyses were utilized to identify relevant predictive markers. Results Twenty trials involving 188 participants with GPi-DBS and 110 individuals with STN-DBS were eligible. Both groups showed improvement of the Burke-Fahn-Marsden Dystonia Rating Scale-Movement (BFMDRS-M) and Disability (BFMDRS-D) scores (BFMDRS-M: MD = 10.57 [7.74-13.41] for GPi-DBS, and MD = 8.59 [4.08-13.11] for STN-DBS; BFMDRS-D: MD = 5.96 [3.15-8.77] for GPi-DBS, and MD = 4.71 [1.38-8.04] for STN-DBS; all P < 0.001) from baseline to the final follow-up, while no notable disparity in improvement rates was observed between them. Stimulation-related complications occurrence was also similar between two groups (38.54 ± 24.07% vs. 43.17 ± 29.12%, P = 0.7594). Simultaneously, preoperative BFMDRS-M score and disease duration were positively connected with the relative changes in BFMDRS-M score at the final visit. Conclusion Both GPi-DBS and STN-DBS are effective MS therapies, with no differences in efficacy or the frequency of stimulation-related problems. Higher preoperative scores and longer disease duration probably predict greater improvement.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, China
| | - Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shiqing Pan
- A6 East in Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weikang Xing
- Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, China
| | - Chuanjun Huang
- Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guozheng Zhao
- Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Hao Q, Zheng W, Zhang Z, Liu Y, Ding H, OuYang J, Liu Z, Wu G, Liu R. Subthalamic nucleus deep brain stimulation in primary Meige syndrome: motor and non-motor outcomes. Eur J Neurol 2024; 31:e16121. [PMID: 37933887 PMCID: PMC11235968 DOI: 10.1111/ene.16121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND AND PURPOSE Deep brain stimulation (DBS) has emerged as a promising treatment for movement disorders. This prospective study aims to evaluate the effects of bilateral subthalamic nucleus DBS (STN-DBS) on motor and non-motor symptoms in patients with primary Meige syndrome. METHODS Thirty patients who underwent bilateral STN-DBS between April 2017 and June 2020 were included. Standardized and validated scales were utilized to assess the severity of dystonia, health-related quality of life, sleep, cognitive function and mental status at baseline and at 1 year and 3 years after neurostimulation. RESULTS The Burke-Fahn-Marsden Dystonia Rating Scale movement scores showed a mean improvement of 63.0% and 66.8% at 1 year and 3 years, respectively, after neurostimulation. Similarly, the Burke-Fahn-Marsden Dystonia Rating Scale disability scores improved by 60.8% and 63.3% at the same time points. Postoperative quality of life demonstrated a significant and sustained improvement throughout the follow-up period. However, cognitive function, mental status, sleep quality and other neuropsychological functions did not change after 3 years of neurostimulation. Eight adverse events occurred in six patients, but no deaths or permanent sequelae were reported. CONCLUSIONS Bilateral STN-DBS is a safe and effective alternative treatment for primary Meige syndrome, leading to improvements in motor function and quality of life. Nevertheless, it did not yield significant amelioration in cognitive, mental, sleep status and other neuropsychological functions after 3 years of neurostimulation.
Collapse
Affiliation(s)
- Qing‐Pei Hao
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Wen‐Tao Zheng
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Zi‐Hao Zhang
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Ye‐Zu Liu
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Hu Ding
- Department of NeurologyPeking University People's HospitalBeijingChina
| | - Jia OuYang
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
- Functional Neurosurgery Research CenterPeking University Health Science CenterBeijingChina
| | - Zhi Liu
- Department of NeuropsychologyPeking University People's HospitalBeijingChina
| | - Guang‐Yong Wu
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
- Department of NeuropsychologyPeking University People's HospitalBeijingChina
- Department of NeurosurgeryBeijing Shunyi HospitalBeijingChina
| | - Ru‐En Liu
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
- Department of NeuropsychologyPeking University People's HospitalBeijingChina
| |
Collapse
|
11
|
Zhang B, Tian H, Yu Y, Zhen X, Zhang L, Yuan Y, Wang L. A localized pallidal physiomarker in Meige syndrome. Front Neurol 2023; 14:1286634. [PMID: 38178893 PMCID: PMC10764606 DOI: 10.3389/fneur.2023.1286634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Objectives Oscillatory patterns in local field potentials (LFPs) have been recognized as disease-specific physiomarkers, particularly in the context of Parkinson's disease and cervical dystonia. This characteristic oscillatory feature is currently employed in adaptive deep brain stimulation (aDBS). However, for other types of dystonia, especially Meige syndrome, a distinct physiomarker of this nature is yet to be identified. Methods Local field potentials were recorded during microelectrode-guided deep brain stimulation surgery from 28 patients with primary Meige syndrome. Before surgery, the severity of patients' motor syndrome were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale-Motor (BFMDRS-M). An instantaneous oscillation detection method was employed to identify true narrowband oscillations. Subsequently, a linear mixed effects model was utilized to examine the relationship between oscillatory activities (including power amplitude and burst duration) and symptom severity. Results The focal peaks of "oscillatory activities" detected were predominantly concentrated in the narrow theta band (4-8 Hz), constituting 81.5% of the total detected oscillations in all recording sites near active DBS contacts in the globus pallidus internus (GPi). The linear mixed effects model revealed a positive correlation between the theta burst duration and the severity of preoperative motor impairment, but no correlation with postoperative motor scores. Additionally, there was no significant lateralization effect observed between the left and right GPi. Conclusion Our findings suggest that the exaggerated narrowband theta activity (mainly the burst duration) in the GPi is predictive of dystonia symptom severity and may be used as a physiomarker for optimized DBS target during surgery and adaptive DBS for the treatment of Meige syndrome.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Hong Tian
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Xueke Zhen
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Li Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Yue Yuan
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Lin S, Shu Y, Zhang C, Wang L, Huang P, Pan Y, Ding J, Sun B, Li D, Wu Y. Globus pallidus internus versus subthalamic nucleus deep brain stimulation for isolated dystonia: A 3-year follow-up. Eur J Neurol 2023; 30:2629-2640. [PMID: 37235703 DOI: 10.1111/ene.15895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND PURPOSE Bilateral deep brain stimulation (DBS) surgery targeting the globus pallidus internus (GPi) or the subthalamic nucleus (STN) is widely used in medication-refractory dystonia. However, evidence regarding target selection considering various symptoms remains limited. This study aimed to compare the effectiveness of these two targets in patients with isolated dystonia. METHODS This retrospective study evaluated 71 consecutive patients (GPi-DBS group, n = 32; STN-DBS group, n = 39) with isolated dystonia. Burke-Fahn-Marsden Dystonia Rating Scale scores and quality of life were evaluated preoperatively and at 1, 6, 12, and 36 months postoperatively. Cognition and mental status were assessed preoperatively and at 36 months postoperatively. RESULTS Targeting the STN (STN-DBS) yielded effects within 1 month (65% vs. 44%; p = 0.0076) and was superior at 1 year (70% vs. 51%; p = 0.0112) and 3 years (74% vs. 59%; p = 0.0138). For individual symptoms, STN-DBS was preferable for eye involvement (81% vs. 56%; p = 0.0255), whereas targeting the GPi (GPi-DBS) was better for axis symptoms, especially for the trunk (82% vs. 94%; p = 0.015). STN-DBS was also favorable for generalized dystonia at 36-month follow-up (p = 0.04) and required less electrical energy (p < 0.0001). Disability, quality of life, and depression and anxiety measures were also improved. Neither target influenced cognition. CONCLUSIONS We demonstrated that the GPi and STN are safe and effective targets for isolated dystonia. The STN has the benefits of fast action and low battery consumption, and is superior for ocular dystonia and generalized dystonia, while the GPi is better for trunk involvement. These findings may offer guidance for future DBS target selection for different types of dystonia.
Collapse
Affiliation(s)
- Suzhen Lin
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Shu
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Wang
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianqing Ding
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Stephen CD, Dy-Hollins M, Gusmao CMD, Qahtani XA, Sharma N. Dystonias: Clinical Recognition and the Role of Additional Diagnostic Testing. Semin Neurol 2023; 43:17-34. [PMID: 36972613 DOI: 10.1055/s-0043-1764292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Dystonia is the third most common movement disorder, characterized by abnormal, frequently twisting postures related to co-contraction of agonist and antagonist muscles. Diagnosis is challenging. We provide a comprehensive appraisal of the epidemiology and an approach to the phenomenology and classification of dystonia, based on the clinical characteristics and underlying etiology of dystonia syndromes. We discuss the features of common idiopathic and genetic forms of dystonia, diagnostic challenges, and dystonia mimics. Appropriate workup is based on the age of symptom onset, rate of progression, whether dystonia is isolated or combined with another movement disorder or complex neurological and other organ system eatures. Based on these features, we discuss when imaging and genetic should be considered. We discuss the multidisciplinary treatment of dystonia, including rehabilitation and treatment principles according to the etiology, including when pathogenesis-direct treatment is available, oral pharmacological therapy, chemodenervation with botulinum toxin injections, deep brain stimulation and other surgical therapies, and future directions.
Collapse
Affiliation(s)
| | - Marisela Dy-Hollins
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Xena Al Qahtani
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
14
|
Zheng H, Wu L, Tian S, Liu M, Zhan Q, Yu X, Xie Y, Zhong X, Wu W. Effect of botulinum toxin type A on non-motor symptoms and quality of life in Meige syndrome. Front Neurol 2023; 14:1115482. [PMID: 36846150 PMCID: PMC9947842 DOI: 10.3389/fneur.2023.1115482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Background It has been shown in previous studies that botulinum toxin type A (BTX-A) can effectively relieve the motor symptoms of Meige syndrome. However, its effect on non-motor symptoms (NMS) and quality of life (QoL) has not been comprehensively studied. This study aimed to explore the effects of BTX-A on NMS and QoL and to clarify the relationship between changes in motor symptoms, NMS, and QoL after BTX-A. Methods Seventy-five patients were recruited for the study. All patients were assessed by a series of clinical assessments before, one, and 3 months after BTX-A treatment. Dystonic symptoms, psychiatric disturbances, sleep disorders, and QoL were evaluated. Results After 1 and 3 months of BTX-A treatment, the scores of motor symptoms, anxiety, and depression were significantly decreased (P < 0.05). Except for general health, the scores of the other 36-item short-form health survey QoL subitems were significantly improved after BTX-A (P < 0.05). After 1 month of treatment, the changes in anxiety and depression were not correlated with changes in motor symptoms (P > 0.05). Still, they were negatively correlated with changes in physical functioning, role-physical and mental component summary QoL (P < 0.05). Conclusions BTX-A effectively improved motor symptoms, anxiety, depression, and QoL. Anxiety and depression improvement did not correlate with motor symptom changes after BTX-A, and QoL improvements were strongly associated with psychiatric disturbances.
Collapse
Affiliation(s)
- Heqing Zheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lanxiang Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Sheng Tian
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mingxu Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingqing Zhan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinping Yu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yonggang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xianhui Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Wu
- *Correspondence: Wei Wu ✉
| |
Collapse
|
15
|
Liu J, Ding H, Xu K, Wang D, Ouyang J, Liu Z, Liu R. Micro lesion effect of pallidal deep‑brain stimulation for meige syndrome. Sci Rep 2022; 12:19980. [PMID: 36411289 PMCID: PMC9678874 DOI: 10.1038/s41598-022-23156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
To analyse the microlesion effect (MLE) in the globus pallidus interna (GPi) of deep brain stimulation (DBS) in patients with Meige syndrome. Thirty-two patients with primary Meige syndrome who underwent GPi-DBS in this study. Burke-Fahn-Marsden Dystonia Rating Scale scores (BFMDRS-M) were obtained for the evaluation of clinical symptoms at 3 days before DBS (baseline), 24 h after DBS surgery, once weekly for 1 month until electrical stimulation, 6 months postoperatively and 12 months after surgery. Twenty-seven patients had MLE after GPi-DBS. The mean time of BFMDRS-M scores maximal improvement from MLE was 35.9 h postoperatively (range, 24-48 h), and the mean scores improved by 49.35 ± 18.16%. At 12 months after surgery, the mean BFMDRS-M scores improved by 50.28 ± 29.70%. There was a positive correlation between the magnitude of MLE and the motor score at 12 months after GPi-DBS (R2 = 0.335, p < 0.05). However, there was no correlation between the duration of MLE and DBS improvement. Most Meige syndrome patients who underwent GPi-DBS and had MLE benefited from MLE. For Meige syndrome, MLE might be a predictive factor for patient clinical symptom improvement from DBS.
Collapse
Affiliation(s)
- Jiayu Liu
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| | - Hu Ding
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| | - Ke Xu
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| | - Dongliang Wang
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| | - Jia Ouyang
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| | - Zhi Liu
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| | - Ruen Liu
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| |
Collapse
|
16
|
Deep brain stimulation in dystonia: factors contributing to variability in outcome in short and long term follow-up. Curr Opin Neurol 2022; 35:510-517. [PMID: 35787538 DOI: 10.1097/wco.0000000000001072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is currently the most effective treatment for medically refractory dystonia with globus pallidus internus (GPi) usually the preferred target. Despite the overall success of DBS in dystonia, there remains variability in treatment outcome in both short and long-term follow-up, due to various factors. Factors contributing to variability in outcome comprise 'Dystonia Related' including dystonia classification, semiology, duration, body distribution, orthopaedic deformity, aetiology and genetic cause. The majority of these factors are identifiable from clinical assessment, brain MRI and genetic testing, and therefore merit careful preoperative consideration. 'DBS related' factors include brain target, accuracy of lead placement, stimulation parameters, time allowed for response, neurostimulation technology employed and DBS induced side-effects. In this review, factors contributing to variability in short and long-term dystonia DBS outcome are reviewed and discussed. RECENT FINDINGS The recognition of differential DBS benefit in monogenic dystonia, increasing experience with subthalamic nucleus (STN) DBS and in DBS for Meige syndrome, elucidation of DBS side effects and novel neurophysiological and imaging techniques to assist in predicting clinical outcome. SUMMARY Improved understanding of factors contributing to variability of DBS outcome in dystonia may assist in patient selection and predicting surgical outcomes.
Collapse
|
17
|
Liu J, Li L, Li Y, Wang Q, Liu R, Ding H. Metabolic Imaging of Deep Brain Stimulation in Meige Syndrome. Front Aging Neurosci 2022; 14:848100. [PMID: 35370610 PMCID: PMC8968570 DOI: 10.3389/fnagi.2022.848100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesThe subthalamic nucleus (STN) has been shown to be a safe and effective deep brain stimulation (DBS) surgical target for the treatment of Meige syndrome. The aim of this study was to compare changes in brain metabolism before and 6 months after STN-DBS surgery.MethodsTwenty-five patients with primary Meige syndrome underwent motor function assessment, including the Burke–Fahn–Marsden Dystonia Rating Scale movement (BFMDRS-M) and disability subscale (BFMDRS-D) and positron emission tomography with an 18[F]-fluorodeoxyglucose scan before and 6 months after STN-DBS surgery. For the voxelwise metabolic change assessment, the p-value was controlled for multiple comparisons using the familywise error rate.ResultsThere was a significant decrease in BFMDRS-M scores 6 months after STN-DBS, from 10.02 ± 3.99 to 4.00 ± 2.69 (p < 0.001). The BFMDRS-D scores also decreased significantly from 4.52 ± 2.90 to 0.64 ± 1.29 (p < 0.001). In the left hemisphere, hypermetabolism was found in the occipital lobe, superior parietal gyrus, postcentral gyrus and thalamus. In the right hemisphere, hypermetabolism was found in the lentiform nucleus, precuneus and precentral gyrus in patients with Meige syndrome receiving DBS. In addition, the bilateral inferior temporal gyrus and middle frontal gyrus exhibited glucose hypermetabolism.ConclusionOur findings indicate that STN-DBS has a significant effect on metabolic level in the brain, which may be an important mechanism for the treatment of Meige syndrome using STN-DBS.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, China
| | - Lei Li
- Department of Nuclear Medicine, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Yuan Li
- Department of Nuclear Medicine, Peking University People’s Hospital, Beijing, China
| | - Qian Wang
- Department of Nuclear Medicine, Peking University People’s Hospital, Beijing, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, China
- *Correspondence: Ruen Liu,
| | - Hu Ding
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
18
|
Liu J, Li L, Li Y, Wang Q, Liu R, Ding H. Regional metabolic and network changes in Meige syndrome. Sci Rep 2021; 11:15753. [PMID: 34344985 PMCID: PMC8333318 DOI: 10.1038/s41598-021-95333-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/26/2021] [Indexed: 11/15/2022] Open
Abstract
To contribute to the understanding of the aetiology and pathogenesis of Meige syndrome, the metabolic networks of patients with Meige syndrome were investigated using 18F-fluoro-D-glucose positron emission tomography (18F-FDG-PET) imaging of cerebral glucose metabolism. Fifty right-handed and unmedicated primary Meige syndrome patients enrolled between September 2017 and September 2020 at the Department of Neurosurgery, Peking University People’s Hospital, and 50 age- and sex-matched healthy control subjects participated in the study. Metabolic connectivity and graph theory analysis were used to investigate metabolic network differences based on 18F-FDG-PET images. Glucose hypometabolism was detected in the left internal globus pallidus and parietal lobe, right frontal lobe and postcentral gyrus, and bilateral thalamus and cerebellum of patients with Meige syndrome. Clustering coefficients (Cps) (density threshold: 16–28%; P < 0.05) and shortest path lengths (Lps) (density threshold: 10–15%; P < 0.05) were higher in Meige syndrome patients than in healthy controls. Small-worldness was lower in Meige syndrome patients than in healthy controls, and centrality was significantly lower in the right superior occipital gyrus and pallidum and higher in the right thalamus. Hypometabolism in the globus pallidus and thalamus may indicate basal ganglia-thalamocortical motor circuit abnormalities as a pathogenic mechanism of Meige syndrome, providing a possible explanation for the efficacy of deep brain stimulation (DBS) in improving symptoms. Meige syndrome patients had abnormal small-world properties. Centrality changes in the right pallidus and thalamus verified the important roles of these regions in the pathogenesis of Meige syndrome.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St, Beijing, 100044, China
| | - Lei Li
- Department of Nuclear Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), No. 79 Kangning Road, Xiangzhou District, Zhuhai, 519000, Guangdong, China
| | - Yuan Li
- Department of Nuclear Medicine, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Qian Wang
- Department of Nuclear Medicine, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St, Beijing, 100044, China.
| | - Hu Ding
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St, Beijing, 100044, China
| |
Collapse
|
19
|
Liu J, Ding H, Xu K, Liu R, Wang D, Ouyang J, Liu Z, Miao Z. Pallidal versus subthalamic deep-brain stimulation for meige syndrome: a retrospective study. Sci Rep 2021; 11:8742. [PMID: 33888857 PMCID: PMC8062505 DOI: 10.1038/s41598-021-88384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
Deep-brain stimulation (DBS) is an effective treatment for patients with Meige syndrome. The globus pallidus interna (GPi) and the subthalamic nucleus (STN) are accepted targets for this treatment. We compared 12-month outcomes for patients who had undergone bilateral stimulation of the GPi or STN. Forty-two Asian patients with primary Meige syndrome who underwent GPi or STN neurostimulation were recruited between September 2017 and September 2019 at the Department of Neurosurgery, Peking University People's Hospital. The primary outcome was the change in motor function, including the Burke-Fahn-Marsden Dystonia Rating Scale movement (BFMDRS-M) and disability subscale (BFMDRS-D) at 3 days before DBS (baseline) surgery and 1, 3, 6, and 12 months after surgery. Secondary outcomes included health-related quality of life, sleep quality status, depression severity, and anxiety severity at 3 days before and 12 months after DBS surgery. Adverse events during the 12 months were also recorded. Changes in BFMDRS-M and BFMDRS-D scores at 1, 3, 6, and 12 months with DBS and without medication did not significantly differ based on the stimulation target. There were also no significant differences in the changes in health-related quality of life (36-Item Short-Form General Health Survey) and sleep quality status (Pittsburgh Sleep Quality Index) at 12 months. However, there were larger improvements in the STN than the GPi group in mean score changes on the 17-item Hamilton depression rating scale (- 3.38 vs. - 0.33 points; P = 0.014) and 14-item Hamilton anxiety rating scale (- 3.43 vs. - 0.19 points; P < 0.001). There were no significant between-group differences in the frequency or type of serious adverse events. Patients with Meige syndrome had similar improvements in motor function, quality of life and sleep after either pallidal or subthalamic stimulation. Depression and anxiety factors may reasonably be included during the selection of DBS targets for Meige syndrome.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Hu Ding
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Ke Xu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China.
| | - Dongliang Wang
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Jia Ouyang
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Zhi Liu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Zeyu Miao
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| |
Collapse
|
20
|
Ma H, Qu J, Ye L, Shu Y, Qu Q. Blepharospasm, Oromandibular Dystonia, and Meige Syndrome: Clinical and Genetic Update. Front Neurol 2021; 12:630221. [PMID: 33854473 PMCID: PMC8039296 DOI: 10.3389/fneur.2021.630221] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Meige syndrome (MS) is cranial dystonia characterized by the combination of upper and lower cranial involvement and including binocular eyelid spasms (blepharospasm; BSP) and involuntary movements of the jaw muscles (oromandibular dystonia; OMD). The etiology and pathogenesis of this disorder of the extrapyramidal system are not well-understood. Neurologic and ophthalmic examinations often reveal no abnormalities, making diagnosis difficult and often resulting in misdiagnosis. A small proportion of patients have a family history of the disease, but to date no causative genes have been identified to date and no cure is available, although botulinum toxin A therapy effectively mitigates the symptoms and deep brain stimulation is gaining increasing attention as a viable alternative treatment option. Here we review the history and progress of research on MS, BSP, and OMD, as well as the etiology, pathology, diagnosis, and treatment.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Liangjun Ye
- Department of Pharmacy, Hunan Provincial Corps Hospital of Chinese People's Armed Police Force, Changsha, China
| | - Yi Shu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|