1
|
Bellini G, Di Rauso G, Fontanelli L, Benevento E, Becattini L, Frosini D, Ceravolo R, Del Prete E. Deep brain stimulation in progressive supranuclear palsy: a dead-end story? A narrative review. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02904-4. [PMID: 40123032 DOI: 10.1007/s00702-025-02904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Progressive supranuclear palsy (PSP) is a rare, debilitating neurodegenerative disorder that significantly impairs both motor and cognitive functions. Current pharmacological treatments offer only transient symptomatic relief, driving interest in the past in alternative therapeutic strategies such as deep brain stimulation. Deep brain stimulation (DBS), known for its success in treating motor symptoms of Parkinson's disease, has been explored as a possible symptomatic treatment for PSP, considering the pedunculopontine nucleus (PPN), involved in motor control and postural stability, as a promising target for deep brain stimulation in PSP. However, its complex anatomy and the clinical variability of PSP complicate the prediction and generalization of the effectiveness of DBS. The present review examines the existing studies in the literature about DBS in PSP patients. Some studies highlighted modest benefits in motor symptoms, while others reported variable outcomes and inherent risks of the procedure. Generally, patients with a parkinsonism predominant phenotype have shown some subjective or clinical improvements in gait and balance when subjected to low-frequency stimulation. While DBS of the PPN holds promise for ameliorating gait and balance of PSP, current evidence does not yet establish clear criteria for ideal candidates, nor does it provide overwhelmingly supportive results in favor of PPN-DBS in PSP patients. Without any further systematic study is not possible to define accurate candidate selection parameters and understand long-term outcomes and safety profiles.
Collapse
Affiliation(s)
- Gabriele Bellini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Neurology, the Marlene and Paolo Fresco Institute for Parkinson's Disease and Movement Disorders, New York University Langone Health, New York, NY, 10017, USA
| | - Giulia Di Rauso
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Lorenzo Fontanelli
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Health Science Interdisciplinary Centre, Sant'Anna School of Advanced Studies, PisaNeurology Unit, Department of Medical Specialties, AOUP, Pisa, Italy
| | - Elena Benevento
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucrezia Becattini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Frosini
- Neurology Unit, Department of Neuroscience, AOUP, Via Roman. 67, 56126, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Neurodegenerative Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Neurology Unit, Department of Neuroscience, AOUP, Via Roman. 67, 56126, Pisa, Italy.
| |
Collapse
|
2
|
Witzig V, Pjontek R, Tan SKH, Schulz JB, Holtbernd F. Modulating the cholinergic system-Novel targets for deep brain stimulation in Parkinson's disease. J Neurochem 2025; 169:e16264. [PMID: 39556446 PMCID: PMC11808463 DOI: 10.1111/jnc.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024]
Abstract
Parkinson's disease (PD) is the second-fastest growing neurodegenerative disease in the world. The major clinical symptoms rigor, tremor, and bradykinesia derive from the degeneration of the nigrostriatal pathway. However, PD is a multi-system disease, and neurodegeneration extends beyond the degradation of the dopaminergic pathway. Symptoms such as postural instability, freezing of gait, falls, and cognitive decline are predominantly caused by alterations of transmitter systems outside the classical dopaminergic axis. While levodopa and deep brain stimulation (DBS) of the subthalamic nucleus or globus pallidus internus effectively address PD primary motor symptoms, they often fall short in mitigating axial symptoms and cognitive impairment. Along these lines, the cholinergic system is increasingly recognized to play a crucial role in governing locomotion, postural stability, and cognitive function. Thus, there is a growing interest in bolstering the cholinergic tone by DBS of cholinergic targets such as the pedunculopontine nucleus (PPN) and nucleus basalis of Meynert (NBM), aiming to alleviate these debilitating symptoms resistant to traditional treatment strategies targeting the dopaminergic network. This review offers a comprehensive overview of the role of cholinergic dysfunction in PD. We discuss the impact of PPN and NBM DBS on the management of symptoms not readily accessible to established DBS targets and pharmacotherapy in PD and seek to provide guidance on patient selection, surgical approach, and stimulation paradigms.
Collapse
Affiliation(s)
- V. Witzig
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - R. Pjontek
- Department of NeurosurgeryRWTH Aachen UniversityAachenGermany
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital CologneCologneGermany
| | - S. K. H. Tan
- Department of NeurosurgeryAntwerp University HospitalEdegemBelgium
- Translational Neurosciences, Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - J. B. Schulz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingJülich Research Center GmbH and RWTH Aachen UniversityAachenGermany
| | - F. Holtbernd
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingJülich Research Center GmbH and RWTH Aachen UniversityAachenGermany
- Jülich Research Center, Institutes of Neuroscience and Medicine (INM‐4, INM‐11)JülichGermany
| |
Collapse
|
3
|
Kase D, Zimnik AJ, Han Y, Harsch DR, Bacha S, Cox KM, Bostan AC, Richardson RM, Turner RS. Movement-related activity in the internal globus pallidus of the parkinsonian macaque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610310. [PMID: 39257740 PMCID: PMC11383679 DOI: 10.1101/2024.08.29.610310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Although the basal ganglia (BG) plays a central role in the motor symptoms of Parkinson's disease, few studies have investigated the influence of parkinsonism on movement-related activity in the BG. Here, we studied the perimovement activity of neurons in globus pallidus internus (GPi) of non-human primates before and after the induction of parkinsonism by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuronal responses were equally common in the parkinsonian brain as seen prior to MPTP and the distribution of different response types was largely unchanged. The slowing of behavioral reaction times and movement durations following the induction of parkinsonism was accompanied by a prolongation of the time interval between neuronal response onset and movement initiation. Neuronal responses were also reduced in magnitude and prolonged in duration after the induction of parkinsonism. Importantly, those two effects were more pronounced among decrease-type responses, and they persisted after controlling for MPTP-induced changes in the trial-by-trial timing of neuronal responses. Following MPTP The timing of neuronal responses also became uncoupled from the time of movement onset and more variable from trial-to-trial. Overall, the effects of MPTP on temporal features of neural responses correlated most consistently with the severity of parkinsonian motor impairments whereas the changes in response magnitude and duration were either anticorrelated with symptom severity or inconsistent. These findings point to a potential previously underappreciated role for abnormalities in the timing of GPi task-related activity in the generation of parkinsonian motor signs.
Collapse
Affiliation(s)
- Daisuke Kase
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Andrew J Zimnik
- Department of Neuroscience, Columbia University Medical Center, New York, NY
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Yan Han
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Devin R Harsch
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sarah Bacha
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karin M Cox
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andreea C Bostan
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert S Turner
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
4
|
Coulombe V, Goetz L, Bhattacharjee M, Gould PV, Saikali S, Takech MA, Philippe É, Parent A, Parent M. Cholinergic and Nadph-δ neurons in the pedunculopontine and laterodorsal tegmental nuclei of human and nonhuman primates. J Comp Neurol 2024; 532:e25570. [PMID: 38108576 DOI: 10.1002/cne.25570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
The brainstem pedunculopontine (PPN) and laterodorsal tegmental (LDTg) nuclei are involved in multifarious activities, including motor control. Yet, their exact cytoarchitectural boundaries are still uncertain. We therefore initiated a comparative study of the topographical and neurochemical organization of the PPN and LDTg in cynomolgus monkeys (Macaca fascicularis) and humans. The distribution and morphological characteristics of neurons expressing choline acetyltransferase (ChAT) and/or nicotinamide adenine dinucleotide phosphate diaphorase (Nadph-δ) were documented. The number and density of the labeled neurons were obtained by stringent stereological methods, whereas their topographical distribution was reported upon corresponding magnetic resonance imaging (MRI) planes. In both human and nonhuman primates, the PPN and LDTg are populated by three neurochemically distinct types of neurons (ChAT-/Nadph-δ+, ChAT+/Nadph-δ-, and ChAT+/Nadph-δ+), which are distributed according to a complex spatial interplay. Three-dimensional reconstructions reveal that ChAT+ neurons in the PPN and LDTg form a continuum with some overlaps with pigmented neurons of the locus coeruleus, dorsally, and of the substantia nigra (SN) complex, ventrally. The ChAT+ neurons in the PPN and LDTg are -two to three times more numerous in humans than in monkeys but their density is -three to five times higher in monkeys than in humans. Neurons expressing both ChAT and Nadph-δ have a larger cell body and a longer primary dendritic arbor than singly labeled neurons. Stereological quantification reveals that 25.6% of ChAT+ neurons in the monkey PPN are devoid of Nadph-δ staining, a finding that questions the reliability of Nadph-δ as a marker for cholinergic neurons in primate brainstem.
Collapse
Affiliation(s)
| | - Laurent Goetz
- Hôpital Fondation Rothschild, Neurochirurgie pédiatrique - Unité Parkinson, Paris, France
| | - Manik Bhattacharjee
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm, Grenoble, France
- CNRS, UMR, Grenoble INP, TIMC, Grenoble, France
| | - Peter V Gould
- Hôpital de L'Enfant-Jésus, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Stephan Saikali
- Hôpital de L'Enfant-Jésus, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | | | - Éric Philippe
- Laboratoire d'Anatomie, Université Laval, Quebec City, QC, Canada
| | - André Parent
- CERVO Brain Research Center, Quebec City, QC, Canada
| | - Martin Parent
- CERVO Brain Research Center, Quebec City, QC, Canada
| |
Collapse
|
5
|
Yako T, Kitazawa K, Kobayashi S, Yomo S, Sato H, Johnson LA, Vitek JL, Hashimoto T. Role of Microelectrode Recording in Deep Brain Stimulation of the Pedunculopontine Nucleus: A Physiological Study of Two Cases. Neuromodulation 2022; 25:925-934. [PMID: 34435731 DOI: 10.1111/ner.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been reported to improve gait disturbances in Parkinson's disease (PD); however, there are controversies on the radiological and electrophysiological techniques for intraoperative and postoperative confirmation of the target and determination of optimal stimulation parameters. OBJECTIVES We investigated the correlation between the location of the estimated PPN (ePPN) and neuronal activity collected during intraoperative electrophysiological mapping to evaluate the role of microelectrode recording (MER) in identifying the effective stimulation site in two PD patients. MATERIALS AND METHODS Bilateral PPN DBS was performed in two patients who had suffered from levodopa refractory gait disturbance. They had been implanted previously with DBS in the internal globus pallidus and the subthalamic nucleus, respectively. The PPN was determined on MRI and identified by intraoperative MER. Neuronal activity recorded was analyzed for mean discharge rate, bursting, and oscillatory activity. The effects were assessed by clinical ratings for motor signs before and after surgery. RESULTS The PPN location was detected by MER. Groups of neurons characterized by tonic discharges were found 9-10 mm below the thalamus. The mean discharge rate in the ePPN was 19.1 ± 15.1 Hz, and 33% of the neurons of the ePPN responded with increased discharge rate during passive manipulation of the limbs and orofacial structures. PPN DBS with bipolar stimulation at a frequency range 10-30 Hz improved gait disturbances in both patients. Although PPN DBS provided therapeutic effects post-surgery in both cases, the effects waned after a year in case 1 and three years in case 2. CONCLUSIONS Estimation of stimulation site within the PPN is possible by combining physiological guidance using MER and MRI findings. The PPN is a potential target for gait disturbances, although the efficacy of PPN DBS may depend on the location of the electrode and the stimulation parameters.
Collapse
Affiliation(s)
- Takehiro Yako
- Department of Neurosurgery, Aizawa Hospital, Matsumoto, Japan.
| | - Kazuo Kitazawa
- Department of Neurosurgery, Aizawa Hospital, Matsumoto, Japan
| | | | - Shoji Yomo
- Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan
| | - Hiromasa Sato
- Department of Neurology, Aizawa Hospital, Matsumoto, Japan
| | - Luke A Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
6
|
Baumgartner AJ, Thompson JA, Kern DS, Ojemann SG. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev 2022; 45:2593-2613. [PMID: 35511309 DOI: 10.1007/s10143-022-01770-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus. However, reports of outcomes utilizing these targets are scattered and disparate. In order to provide a comprehensive resource for researchers and clinicians alike, we have summarized the existing literature surrounding these novel targets, including rationale for their use, neurosurgical techniques where relevant, outcomes and adverse effects of stimulation, and future directions for research.
Collapse
Affiliation(s)
| | - John A Thompson
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Drew S Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Steven G Ojemann
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Neurophysiological Characterization of Posteromedial Hypothalamus in Anaesthetized Patients. Brain Sci 2021; 12:brainsci12010043. [PMID: 35053786 PMCID: PMC8773588 DOI: 10.3390/brainsci12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022] Open
Abstract
Deep brain stimulation (DBS) requires a precise localization, which is especially difficult at the hypothalamus, because it is usually performed in anesthetized patients. We aimed to characterize the neurophysiological properties posteromedial hypothalamus (PMH), identified by the best neurophysiological response to electrical stimulation. We obtained microelectrode recordings from four patients with intractable aggressivity operated under general anesthesia. We pooled data from 1.5 mm at PMH, 1.5 mm upper (uPMH) and 1.5 mm lower (lPMH). We analyzed 178 units, characterized by the mean action potential (mAP). Only 11% were negative. We identified the next types of units: P1N1 (30.9%), N1P1N2 (29.8%), P1P2N1 (16.3%), N1P1 and N1N2P1 (6.2%) and P1N1P2 (5.0%). Besides, atypical action potentials (amAP) were recorded in 11.8%. PMH was highly different in cell composition from uPMH and lPMH, exhibiting also a higher percentage of amAP. Different kinds of cells shared similar features for the three hypothalamic regions. Although features for discharge pattern did not show region specificity, the probability mass function of inter-spike interval were different for all the three regions. Comparison of the same kind of mAP with thalamic neurons previously published demonstrate that most of cells are different for derivatives, amplitude and/or duration of repolarization and depolarization phases and also for the first phase, demonstrating a highly specificity for both brain centers. Therefore, the different properties described for PMH can be used to positively refine targeting, even under general anesthesia. Besides, we describe by first time the presence of atypical extracellular action potentials.
Collapse
|
8
|
Chang SJ, Cajigas I, Guest JD, Noga BR, Widerström-Noga E, Haq I, Fisher L, Luca CC, Jagid JR. MR Tractography-Based Targeting and Physiological Identification of the Cuneiform Nucleus for Directional DBS in a Parkinson's Disease Patient With Levodopa-Resistant Freezing of Gait. Front Hum Neurosci 2021; 15:676755. [PMID: 34168545 PMCID: PMC8217631 DOI: 10.3389/fnhum.2021.676755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Freezing of gait (FOG) is a debilitating motor deficit in a subset of Parkinson's Disease (PD) patients that is poorly responsive to levodopa or deep brain stimulation (DBS) of established PD targets. The proposal of a DBS target in the midbrain, known as the pedunculopontine nucleus (PPN), to address FOG was based on its observed neuropathology in PD and its hypothesized involvement in locomotor control as a part of the mesencephalic locomotor region (MLR). Initial reports of PPN DBS were met with enthusiasm; however, subsequent studies reported mixed results. A closer review of the MLR basic science literature, suggests that the closely related cuneiform nucleus (CnF), dorsal to the PPN, may be a superior site to promote gait. Although suspected to have a conserved role in the control of gait in humans, deliberate stimulation of a homolog to the CnF in humans using directional DBS electrodes has not been attempted. METHODS As part of an open-label Phase 1 clinical study, one PD patient with predominantly axial symptoms and severe FOG refractory to levodopa therapy was implanted with directional DBS electrodes (Boston Science Vercise CartesiaTM) targeting the CnF bilaterally. Since the CnF is a poorly defined reticular nucleus, targeting was guided both by diffusion tensor imaging (DTI) tractography and anatomical landmarks. Intraoperative stimulation and microelectrode recordings were performed near the targets with leg EMG surface recordings in the subject. RESULTS Post-operative imaging revealed accurate targeting of both leads to the designated CnF. Intraoperative stimulation near the target at low thresholds in the awake patient evoked involuntary electromyography (EMG) oscillations in the legs with a peak power at the stimulation frequency, similar to observations with CnF DBS in animals. Oscillopsia was the primary side effect evoked at higher currents, especially when directed posterolaterally. Directional DBS could mitigate oscillopsia. CONCLUSION DTI-based targeting and intraoperative stimulation to evoke limb EMG activity may be useful methods to help target the CnF accurately and safely in patients. Long term follow-up and detailed gait testing of patients undergoing CnF stimulation will be necessary to confirm the effects on FOG. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT04218526.
Collapse
Affiliation(s)
- Stephano J. Chang
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurosurgery, University of British Columbia, Vancouver, BC, Canada
| | - Iahn Cajigas
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - James D. Guest
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Brian R. Noga
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eva Widerström-Noga
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ihtsham Haq
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Letitia Fisher
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Corneliu C. Luca
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jonathan R. Jagid
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
9
|
Features of Action Potentials from Identified Thalamic Nuclei in Anesthetized Patients. Brain Sci 2020; 10:brainsci10121002. [PMID: 33348660 PMCID: PMC7766545 DOI: 10.3390/brainsci10121002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022] Open
Abstract
Our objective was to describe the electrophysiological properties of the extracellular action potential (AP) picked up through microelectrode recordings (MERs). Five patients were operated under general anesthesia for centromedian deep brain stimulation (DBS). APs from the same cell were pooled to obtain a mean AP (mAP). The amplitudes and durations for all 2/3 phases were computed from the mAP, together with the maximum (dVmax) and minimum (dVmin) values of the first derivative, as well as the slopes of different phases during repolarization. The mAPs are denominated according to the phase polarity (P/N for positive/negative). We obtained a total of 1109 mAPs, most of the positive (98.47%) and triphasic (93.69%) with a small P/N deflection (Vphase1) before depolarization. The percentage of the different types of mAPs was different for the nuclei addressed. The relationship between dVmax and the depolarizing phase is specific. The descending phase of the first derivative identified different phases during the repolarizing period. We observed a high correlation between Vphase1 and the amplitudes of either depolarization or repolarization phases. Human thalamic nuclei differ in their electrophysiological properties of APs, even under general anesthesia. Capacitive current, which is probably responsible for Vphase1, is very common in thalamic APs. Moreover, subtle differences during repolarization are neuron-specific.
Collapse
|
10
|
Molina R, Hass CJ, Sowalsky K, Schmitt AC, Opri E, Roper JA, Martinez-Ramirez D, Hess CW, Foote KD, Okun MS, Gunduz A. Neurophysiological Correlates of Gait in the Human Basal Ganglia and the PPN Region in Parkinson's Disease. Front Hum Neurosci 2020; 14:194. [PMID: 32581744 PMCID: PMC7287013 DOI: 10.3389/fnhum.2020.00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
This study aimed to characterize the neurophysiological correlates of gait in the human pedunculopontine nucleus (PPN) region and the globus pallidus internus (GPi) in Parkinson's disease (PD) cohort. Though much is known about the PPN region through animal studies, there are limited physiological recordings from ambulatory humans. The PPN has recently garnered interest as a potential deep brain stimulation (DBS) target for improving gait and freezing of gait (FoG) in PD. We used bidirectional neurostimulators to record from the human PPN region and GPi in a small cohort of severely affected PD subjects with FoG despite optimized dopaminergic medications. Five subjects, with confirmed on-dopaminergic medication FoG, were implanted with bilateral GPi and bilateral PPN region DBS electrodes. Electrophysiological recordings were obtained during various gait tasks for 5 months postoperatively in both the off- and on-medication conditions (obtained during the no stimulation condition). The results revealed suppression of low beta power in the GPi and a 1-8 Hz modulation in the PPN region which correlated with human gait. The PPN feature correlated with walking speed. GPi beta desynchronization and PPN low-frequency synchronization were observed as subjects progressed from rest to ambulatory tasks. Our findings add to our understanding of the neurophysiology underpinning gait and will likely contribute to the development of novel therapies for abnormal gait in PD. Clinical Trial Registration: Clinicaltrials.gov identifier; NCT02318927.
Collapse
Affiliation(s)
- Rene Molina
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Chris J Hass
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Kristen Sowalsky
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Abigail C Schmitt
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Enrico Opri
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Jaime A Roper
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Christopher W Hess
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Aysegul Gunduz
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Freudenburg ZV, Branco MP, Leinders S, van der Vijgh BH, Pels EGM, Denison T, van den Berg LH, Miller KJ, Aarnoutse EJ, Ramsey NF, Vansteensel MJ. Sensorimotor ECoG Signal Features for BCI Control: A Comparison Between People With Locked-In Syndrome and Able-Bodied Controls. Front Neurosci 2019; 13:1058. [PMID: 31680806 PMCID: PMC6805728 DOI: 10.3389/fnins.2019.01058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/20/2019] [Indexed: 01/10/2023] Open
Abstract
The sensorimotor cortex is a frequently targeted brain area for the development of Brain-Computer Interfaces (BCIs) for communication in people with severe paralysis and communication problems (locked-in syndrome; LIS). It is widely acknowledged that this area displays an increase in high-frequency band (HFB) power and a decrease in the power of the low frequency band (LFB) during movement of, for example, the hand. Upon termination of hand movement, activity in the LFB band typically shows a short increase (rebound). The ability to modulate the neural signal in the sensorimotor cortex by imagining or attempting to move is crucial for the implementation of sensorimotor BCI in people who are unable to execute movements. This may not always be self-evident, since the most common causes of LIS, amyotrophic lateral sclerosis (ALS) and brain stem stroke, are associated with significant damage to the brain, potentially affecting the generation of baseline neural activity in the sensorimotor cortex and the modulation thereof by imagined or attempted hand movement. In the Utrecht NeuroProsthesis (UNP) study, a participant with LIS caused by ALS and a participant with LIS due to brain stem stroke were implanted with a fully implantable BCI, including subdural electrocorticography (ECoG) electrodes over the sensorimotor area, with the purpose of achieving ECoG-BCI-based communication. We noted differences between these participants in the spectral power changes generated by attempted movement of the hand. To better understand the nature and origin of these differences, we compared the baseline spectral features and task-induced modulation of the neural signal of the LIS participants, with those of a group of able-bodied people with epilepsy who received a subchronic implant with ECoG electrodes for diagnostic purposes. Our data show that baseline LFB oscillatory components and changes generated in the LFB power of the sensorimotor cortex by (attempted) hand movement differ between participants, despite consistent HFB responses in this area. We conclude that the etiology of LIS may have significant effects on the LFB spectral components in the sensorimotor cortex, which is relevant for the development of communication-BCIs for this population.
Collapse
Affiliation(s)
- Zachary V Freudenburg
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mariana P Branco
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sacha Leinders
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Benny H van der Vijgh
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elmar G M Pels
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Timothy Denison
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Leonard H van den Berg
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kai J Miller
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Erik J Aarnoutse
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nick F Ramsey
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mariska J Vansteensel
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
12
|
Spike discharge characteristic of the caudal mesencephalic reticular formation and pedunculopontine nucleus in MPTP-induced primate model of Parkinson disease. Neurobiol Dis 2018; 128:40-48. [PMID: 30086388 DOI: 10.1016/j.nbd.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
The pedunculopontine nucleus (PPN) included in the caudal mesencephalic reticular formation (cMRF) plays a key role in the control of locomotion and wake state. Regarding its involvement in the neurodegenerative process observed in Parkinson disease (PD), deep brain stimulation of the PPN was proposed to treat levodopa-resistant gait disorders. However, the precise role of the cMRF in the pathophysiology of PD, particularly in freezing of gait and other non-motor symptoms is still not clear. Here, using micro electrode recording (MER) in 2 primates, we show that dopamine depletion did not alter the mean firing rate of the overall cMRF neurons, particularly the putative non-cholinergic ones, but only a decreased activity of the regular neurons sub-group (though to be the cholinergic PPN neurons). Interestingly, a significant increase in the relative proportion of cMRF neurons with a burst pattern discharge was observed after MPTP intoxication. The present results question the hypothesis of an over-inhibition of the CMRF by the basal ganglia output structures in PD. The decreased activity observed in the regular neurons could explain some non-motor symptoms in PD regarding the strong involvement of the cholinergic neurons on the modulation of the thalamo-cortical system. The increased burst activity under dopamine depletion confirms that this specific spike discharge pattern activity also observed in other basal ganglia nuclei and in different pathologies could play a mojor role in the pathophysiology of the disease and could explain several symptoms of PD including the freezing of gait. The present data will have to be replicated in a larger number of animals and will have to investigate more in details how the modification of the spike discharge of the cMRF neurons in the parkinsonian state could alter functions such as locomotion and attentional state. This will ultimely allow a better comprehension of the pathophysiology of freezing of gait.
Collapse
|
13
|
Choudhury S, Singh R, Chatterjee P, Trivedi S, Shubham S, Baker MR, Kumar H, Baker SN. Abnormal Blink Reflex and Intermuscular Coherence in Writer's Cramp. Front Neurol 2018; 9:517. [PMID: 30013510 PMCID: PMC6037196 DOI: 10.3389/fneur.2018.00517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Writer's cramp (WC) is a task-specific focal hand dystonia presenting with pain, stiffness and/or tremor while writing. We explored the involvement of cortical and brainstem circuits by measuring intermuscular coherence (IMC) and pre-pulse inhibition (PPI) of the blink reflex. Methods: IMC was measured in 10 healthy controls and 20 WC patients (10 with associated tremor) while they performed a precision grip task at different force levels. Blink responses were evaluated in 9 healthy controls and 10 WC patients by stimulating the right supraorbital nerve and recording surface EMG from the orbicularis oculi muscles bilaterally. PPI involved conditioning this stimulation with a prior shock to the right median nerve (100 ms interval), and measuring the reduction in the R2 component of the blink reflex. Results: Significant IMC at 3-7 Hz was present in WC patients, but not in healthy controls. Compared to healthy controls, in WC patients the R2 component of the blink reflex showed significantly less PPI. IMC at 3-7 Hz could reliably discriminate WC patients from healthy controls. Conclusion: Cortical or sub-cortical circuits generating theta (3-7 Hz) oscillations might play an important role in the pathogenesis of WC. Moreover, the lack of PPI implicates abnormalities in brainstem inhibition in the emergence of WC. IMC may merit further development as an electrodiagnostic test for focal dystonia.
Collapse
Affiliation(s)
- Supriyo Choudhury
- Department of Neurology, Ram Gopal Chamaria Research Center, Institute of Neurosciences, Kolkata, India
| | - Ravi Singh
- Department of Neurology, Ram Gopal Chamaria Research Center, Institute of Neurosciences, Kolkata, India
| | - Payel Chatterjee
- Department of Neurology, Ram Gopal Chamaria Research Center, Institute of Neurosciences, Kolkata, India
| | - Santosh Trivedi
- Department of Neurology, Ram Gopal Chamaria Research Center, Institute of Neurosciences, Kolkata, India
| | - Shantanu Shubham
- Department of Neurology, Ram Gopal Chamaria Research Center, Institute of Neurosciences, Kolkata, India
| | - Mark R. Baker
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Institute of Neurosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hrishikesh Kumar
- Department of Neurology, Ram Gopal Chamaria Research Center, Institute of Neurosciences, Kolkata, India
| | - Stuart N. Baker
- Institute of Neurosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Goetz L, Bhattacharjee M, Ferraye MU, Fraix V, Maineri C, Nosko D, Fenoy AJ, Piallat B, Torres N, Krainik A, Seigneuret E, David O, Parent M, Parent A, Pollak P, Benabid AL, Debu B, Chabardès S. Deep Brain Stimulation of the Pedunculopontine Nucleus Area in Parkinson Disease: MRI-Based Anatomoclinical Correlations and Optimal Target. Neurosurgery 2018; 84:506-518. [DOI: 10.1093/neuros/nyy151] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Laurent Goetz
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Department of Psychiatry and Neuroscience, Université Laval, Québec City, Canada
| | - Manik Bhattacharjee
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
| | - Murielle U Ferraye
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
| | - Valérie Fraix
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- Department of Neurology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Carina Maineri
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Department of Pediatric Neurosurgery, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Daniela Nosko
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- Pediatric department, Örebro University Hospital, Örebro, Sweden
| | - Albert J Fenoy
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Department of Neurosurgery, University of Texas Houston, Health Science Center, Houston, Texas
| | - Brigitte Piallat
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
| | - Napoléon Torres
- University Grenoble Alpes, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- CEA Clinatec-Minatec, Grenoble, France
| | - Alexandre Krainik
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- Department of Neuroradiology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Eric Seigneuret
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Olivier David
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
| | - Martin Parent
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Department of Psychiatry and Neuroscience, Université Laval, Québec City, Canada
| | - André Parent
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Department of Psychiatry and Neuroscience, Université Laval, Québec City, Canada
| | - Pierre Pollak
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- Department of Neurology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Alim -Louis Benabid
- University Grenoble Alpes, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- CEA Clinatec-Minatec, Grenoble, France
| | - Bettina Debu
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
| | - Stéphan Chabardès
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- CEA Clinatec-Minatec, Grenoble, France
| |
Collapse
|
15
|
Direct localisation of the human pedunculopontine nucleus using MRI: a coordinate and fibre-tracking study. Eur Radiol 2018. [PMID: 29532240 DOI: 10.1007/s00330-017-5299-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To image the pedunculopontine tegmental nucleus (PPN), a deep brain stimulation (DBS) target for Parkinson disease, using MRI with validated results. METHODS This study used the MP2RAGE sequence with high resolution and enhanced grey-white matter contrast on a 7-T ultra-high-field MRI system to image the PPN as well as a diffusion spectrum imaging method on a 3-T MRI system to reconstruct the main fibre systems surrounding the PPN. The coordinates of the rostral and caudal PPN poles of both sides were measured in relation to the third and fourth ventricular landmarks on the 7-T image. RESULTS The boundary of the PPN was delineated, and showed morphology consistent with previous histological works. The main fibres around the PPN were reconstructed. The pole coordinate results combined with the fibre spatial relationships validate the imaging results. CONCLUSIONS A practical protocol is provided to directly localise the PPN using MRI; the position and morphology of the PPN can be obtained and validated by locating its poles relative to two ventricular landmarks and by inspecting its spatial relationship with the surrounding fibre systems. This technique can be potentially used in clinics to define the boundary of the PPN before DBS surgery for treatment of Parkinson disease in a more precise and reliable manner. KEY POINTS • Combined information helps localise the PPN as a DBS target for PD patients • Scan the PPN at 7 T and measure its coordinates against different ventricular landmarks • Reconstruct the main fibres around the PPN using diffusion spectrum imaging.
Collapse
|
16
|
On the Role of the Pedunculopontine Nucleus and Mesencephalic Reticular Formation in Locomotion in Nonhuman Primates. J Neurosci 2017; 36:4917-29. [PMID: 27147647 DOI: 10.1523/jneurosci.2514-15.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/22/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The mesencephalic reticular formation (MRF) is formed by the pedunculopontine and cuneiform nuclei, two neuronal structures thought to be key elements in the supraspinal control of locomotion, muscle tone, waking, and REM sleep. The role of MRF has also been advocated in modulation of state of arousal leading to transition from wakefulness to sleep and it is further considered to be a main player in the pathophysiology of gait disorders seen in Parkinson's disease. However, the existence of a mesencephalic locomotor region and of an arousal center has not yet been demonstrated in primates. Here, we provide the first extensive electrophysiological mapping of the MRF using extracellular recordings at rest and during locomotion in a nonhuman primate (NHP) (Macaca fascicularis) model of bipedal locomotion. We found different neuronal populations that discharged according to a phasic or a tonic mode in response to locomotion, supporting the existence of a locomotor neuronal circuit within these MRF in behaving primates. Altogether, these data constitute the first electrophysiological characterization of a locomotor neuronal system present within the MRF in behaving NHPs under normal conditions, in accordance with several studies done in different experimental animal models. SIGNIFICANCE STATEMENT We provide the first extensive electrophysiological mapping of the two major components of the mesencephalic reticular formation (MRF), namely the pedunculopontine and cuneiform nuclei. We exploited a nonhuman primate (NHP) model of bipedal locomotion with extracellular recordings in behaving NHPs at rest and during locomotion. Different MRF neuronal groups were found to respond to locomotion, with phasic or tonic patterns of response. These data constitute the first electrophysiological evidences of a locomotor neuronal system within the MRF in behaving NHPs.
Collapse
|
17
|
Noga BR, Sanchez FJ, Villamil LM, O'Toole C, Kasicki S, Olszewski M, Cabaj AM, Majczyński H, Sławińska U, Jordan LM. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion. Front Neural Circuits 2017; 11:34. [PMID: 28579945 PMCID: PMC5437718 DOI: 10.3389/fncir.2017.00034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/28/2017] [Indexed: 11/28/2022] Open
Abstract
Oscillatory rhythms in local field potentials (LFPs) are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS) to enhance locomotor recovery in patients with gait disorders. Theta band activity (6–12 Hz) is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR) during locomotion have not been determined. Here we record the oscillatory activity during treadmill locomotion in MLR sites effective for inducing locomotion with electrical stimulation in rats. The results show the presence of oscillatory theta rhythms in the LFPs recorded from the most effective MLR stimulus sites (at threshold ≤60 μA). Theta activity increased at the onset of locomotion, and its power was correlated with the speed of locomotion. In animals with higher thresholds (>60 μA), the correlation between locomotor speed and theta LFP oscillations was less robust. Changes in the gamma band (previously recorded in vitro in the pedunculopontine nucleus (PPN), thought to be a part of the MLR) were relatively small. Controlled locomotion was best achieved at 10–20 Hz frequencies of MLR stimulation. Our results indicate that theta and not delta or gamma band oscillation is a suitable biomarker for identifying the functional MLR sites.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Francisco J Sanchez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Luz M Villamil
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Christopher O'Toole
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Stefan Kasicki
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Maciej Olszewski
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Anna M Cabaj
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Henryk Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Larry M Jordan
- Department of Physiology, Spinal Cord Research Centre, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
18
|
Hamani C, Lozano AM, Mazzone PAM, Moro E, Hutchison W, Silburn PA, Zrinzo L, Alam M, Goetz L, Pereira E, Rughani A, Thevathasan W, Aziz T, Bloem BR, Brown P, Chabardes S, Coyne T, Foote K, Garcia-Rill E, Hirsch EC, Okun MS, Krauss JK. Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Techniques, Side Effects, and Postoperative Imaging. Stereotact Funct Neurosurg 2016; 94:307-319. [PMID: 27728909 DOI: 10.1159/000449011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023]
Abstract
The pedunculopontine nucleus (PPN) region has received considerable attention in clinical studies as a target for deep brain stimulation (DBS) in Parkinson disease. These studies have yielded variable results with an overall impression of improvement in falls and freezing in many but not all patients treated. We evaluated the available data on the surgical anatomy and terminology of the PPN region in a companion paper. Here we focus on issues concerning surgical technique, imaging, and early side effects of surgery. The aim of this paper was to gain more insight into the reasoning for choosing specific techniques and to discuss shortcomings of available studies. Our data demonstrate the wide range in almost all fields which were investigated. There are a number of important challenges to be resolved, such as identification of the optimal target, the choice of the surgical approach to optimize electrode placement, the impact on the outcome of specific surgical techniques, the reliability of intraoperative confirmation of the target, and methodological differences in postoperative validation of the electrode position. There is considerable variability both within and across groups, the overall experience with PPN DBS is still limited, and there is a lack of controlled trials. Despite these challenges, the procedure seems to provide benefit to selected patients and appears to be relatively safe. One important limitation in comparing studies from different centers and analyzing outcomes is the great variability in targeting and surgical techniques, as shown in our paper. The challenges we identified will be of relevance when designing future studies to better address several controversial issues. We hope that the data we accumulated may facilitate the development of surgical protocols for PPN DBS.
Collapse
Affiliation(s)
- Clement Hamani
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ont., Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Baizabal-Carvallo JF, Alonso-Juarez M. Low-frequency deep brain stimulation for movement disorders. Parkinsonism Relat Disord 2016; 31:14-22. [DOI: 10.1016/j.parkreldis.2016.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022]
|
20
|
Guridi J, Alegre M. Oscillatory activity in the basal ganglia and deep brain stimulation. Mov Disord 2016; 32:64-69. [PMID: 27548437 DOI: 10.1002/mds.26714] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 11/11/2022] Open
Abstract
Over the past 10 years, research into the neurophysiology of the basal ganglia has provided new insights into the pathophysiology of movement disorders. The presence of pathological oscillations at specific frequencies has been linked to different signs and symptoms in PD and dystonia, suggesting a new model to explain basal ganglia dysfunction. These advances occurred in parallel with improvements in imaging and neurosurgical techniques, both of which having facilitated the more widespread use of DBS to modulate dysfunctional circuits. High-frequency stimulation is thought to disrupt pathological activity in the motor cortex/basal ganglia network; however, it is not easy to explain all of its effects based only on changes in network oscillations. In this viewpoint, we suggest that a return to classic anatomical concepts might help to understand some apparently paradoxical findings. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jorge Guridi
- Neurosurgery and Clinical Neurophysiology Sections, Clinica Universidad de Navarra, Pamplona, Spain
| | - Manuel Alegre
- Neurosurgery and Clinical Neurophysiology Sections, Clinica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
21
|
Sitti I, Acar G, Zisakis AK, Özdemir M, Acar F, Burchiel KJ. Effect of Subthalamic Nucleus Stimulation on Pedunculopontine Nucleus Neural Activity. Stereotact Funct Neurosurg 2016; 94:54-9. [PMID: 26977617 DOI: 10.1159/000442892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The pedunculopontine nucleus has recently been proposed as an alternative target for deep brain stimulation for the treatment of medically intractable Parkinson's disease. The suggested indication for pedunculopontine nucleus deep brain stimulation is severe and medically intractable axial symptoms such as gait and postural impairment. OBJECTIVE Our goal in this study was to describe the effects of subthalamic nucleus stimulation on pedunculopontine nucleus electrophysiological activity. METHODS Fourteen male Wistar rats were divided into a sham stimulation group and an experimental group. In both groups, electrodes were implanted bilaterally into the subthalamic nucleus and into the right pedunculopontine nucleus. Microelectrode recordings were carried out in both groups prior to and during subthalamic nucleus stimulation. RESULTS Subthalamic nucleus stimulation produced no clear inhibition of neuronal firing in the pedunculopontine nucleus. However, we found that stimulation of the subthalamic nucleus at 60 Hz produces some entrainment of pedunculopontine nucleus neuronal firing and a shift of subthalamic nucleus firing patterns to more tonic and random patterns. These results are consistent with the effects of deep brain stimulation on neuronal activity in the subthalamic nucleus and globus pallidus internus. CONCLUSION The result of this study provides additional evidence to improve our understanding of the mechanism of subthalamic nucleus-deep brain stimulation, and its physiological consequences.
Collapse
Affiliation(s)
- Ilkay Sitti
- Department of Neurosurgery, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | | | | | | | | | | |
Collapse
|
22
|
Li M, Zhang W. Oscillations in pedunculopontine nucleus in Parkinson's disease and its relationship with deep brain stimulation. Front Neural Circuits 2015; 9:47. [PMID: 26388741 PMCID: PMC4556974 DOI: 10.3389/fncir.2015.00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/21/2015] [Indexed: 11/22/2022] Open
Abstract
The recent development of deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) for the treatment of parkinsonian patients, particularly those in advanced stages with axial symptoms, has ignited interest into the study of this brain nucleus. In contrast to the extensively studied alterations of neural activity that occur in the basal ganglia in Parkinson’s disease (PD), our understanding of the activity of the PPN remains insufficient. In recent years, however, a series of studies recording oscillatory activity in the PPN of parkinsonian patients have made important findings. Here, we briefly review recent studies that explore the different kinds of oscillations observed in the PPN of parkinsonian patients, and how they underlie the pathophysiology of PD and the efficacy of PPN-DBS in these disorders.
Collapse
Affiliation(s)
- Min Li
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Wangming Zhang
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University Guangzhou, China
| |
Collapse
|
23
|
Lau B, Welter ML, Belaid H, Fernandez Vidal S, Bardinet E, Grabli D, Karachi C. The integrative role of the pedunculopontine nucleus in human gait. Brain 2015; 138:1284-96. [PMID: 25765327 DOI: 10.1093/brain/awv047] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/06/2015] [Indexed: 01/20/2023] Open
Abstract
The brainstem pedunculopontine nucleus has a likely, although unclear, role in gait control, and is a potential deep brain stimulation target for treating resistant gait disorders. These disorders are a major therapeutic challenge for the ageing population, especially in Parkinson's disease where gait and balance disorders can become resistant to both dopaminergic medication and subthalamic nucleus stimulation. Here, we present electrophysiological evidence that the pedunculopontine and subthalamic nuclei are involved in distinct aspects of gait using a locomotor imagery task in 14 patients with Parkinson's disease undergoing surgery for the implantation of pedunculopontine or subthalamic nuclei deep brain stimulation electrodes. We performed electrophysiological recordings in two phases, once during surgery, and again several days after surgery in a subset of patients. The majority of pedunculopontine nucleus neurons (57%) recorded intrasurgically exhibited changes in activity related to different task components, with 29% modulated during visual stimulation, 41% modulated during voluntary hand movement, and 49% modulated during imaginary gait. Pedunculopontine nucleus local field potentials recorded post-surgically were modulated in the beta and gamma bands during visual and motor events, and we observed alpha and beta band synchronization that was sustained for the duration of imaginary gait and spatially localized within the pedunculopontine nucleus. In contrast, significantly fewer subthalamic nucleus neurons (27%) recorded intrasurgically were modulated during the locomotor imagery, with most increasing or decreasing activity phasically during the hand movement that initiated or terminated imaginary gait. Our data support the hypothesis that the pedunculopontine nucleus influences gait control in manners extending beyond simply driving pattern generation. In contrast, the subthalamic nucleus seems to control movement execution that is not likely to be gait-specific. These data highlight the crucial role of these two nuclei in motor control and shed light on the complex functions of the lateral mesencephalus in humans.
Collapse
Affiliation(s)
- Brian Lau
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | - Marie-Laure Welter
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 2 Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Hayat Belaid
- 2 Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Sara Fernandez Vidal
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 3 Centre de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Eric Bardinet
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 3 Centre de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - David Grabli
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 2 Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Carine Karachi
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 2 Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
24
|
Garcia-Rill E, Hyde J, Kezunovic N, Urbano FJ, Petersen E. The physiology of the pedunculopontine nucleus: implications for deep brain stimulation. J Neural Transm (Vienna) 2015; 122:225-35. [PMID: 24880787 PMCID: PMC4484763 DOI: 10.1007/s00702-014-1243-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/09/2014] [Indexed: 01/07/2023]
Abstract
This brief review resolves a number of persistent conflicts regarding the location and characteristics of the mesencephalic locomotor region, which has in the past been described as not locomotion-specific and is more likely the pedunculopontine nucleus (PPN). The parameters of stimulation used to elicit changes in posture and locomotion we now know are ideally suited to match the intrinsic membrane properties of PPN neurons. The physiology of these cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for the treatment of gait and postural deficits in Parkinson's disease (PD). The discussion explains many of the effects reported following deep brain stimulation (DBS) of the PPN by different groups and provides guidelines for the determination of long-term assessment and effects of PPN DBS. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from DBS for movement disorders. Despite these improvements, there remains a great opportunity for further understanding of the mechanisms through which DBS has its effects and for further development of appropriate technology to effect these treatments. We review the scientific basis for one of the newest targets, the PPN, in the treatment of PD and other movement disorders, and address the needs for further investigation.
Collapse
Affiliation(s)
- E Garcia-Rill
- Department of Neurobiology and Developmental Sciences, Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St, Little Rock, AR, 72205, USA,
| | | | | | | | | |
Collapse
|
25
|
Morita H, Hass CJ, Moro E, Sudhyadhom A, Kumar R, Okun MS. Pedunculopontine Nucleus Stimulation: Where are We Now and What Needs to be Done to Move the Field Forward? Front Neurol 2014; 5:243. [PMID: 25538673 PMCID: PMC4255598 DOI: 10.3389/fneur.2014.00243] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 11/10/2014] [Indexed: 11/13/2022] Open
Abstract
Falls and gait impairment in Parkinson's Disease (PD) is a leading cause of morbidity and mortality, significantly impacting quality of life and contributing heavily to disability. Thus far axial symptoms, such as postural instability and gait freezing, have been refractory to current treatment approaches and remain a critical unmet need. There has been increased excitement surrounding the surgical targeting of the pedunculopontine nucleus (PPN) for addressing axial symptoms in PD. The PPN and cuneate nucleus comprise the mesencephalic locomotor region, and electrophysiologic studies in animal models and human imaging studies have revealed a key role for the PPN in gait and postural control, underscoring a potential role for DBS surgery. Previous limited studies of PPN deep brain stimulation (DBS) in treating gait symptoms have had mixed clinical outcomes, likely reflect targeting variability and the inherent challenges of targeting a small brainstem structure that is both anatomically and neurochemically heterogeneous. Diffusion tractography shows promise for more accurate targeting and standardization of results. Due to the limited experience with PPN DBS, several unresolved questions remain about targeting and programing. At present, it is unclear if there is incremental benefit with bilateral versus unilateral targeting of PPN or whether PPN targeting should be performed as an adjunct to one of the more traditional targets. The PPN also modulates non-motor functions including REM sleep, cognition, mood, attention, arousal, and these observations will require long-term monitoring to fully characterize potential side effects and benefits. Surgical targeting of the PPN is feasible and shows promise for addressing axial symptoms in PD but may require further refinements in targeting, improved imaging, and better lead design to fully realize benefits. This review summarizes the current knowledge of PPN as a DBS target and areas that need to be addressed to advance the field.
Collapse
Affiliation(s)
- Hokuto Morita
- Department of Neurology, University of Florida Center for Movement Disorders and Neurorestoration , Gainesville, FL , USA
| | - Chris J Hass
- Department of Applied Physiology and Kinesiology, University of Florida , Gainesville, FL , USA
| | - Elena Moro
- Department of Psychiatry and Neurology, CHU de Grenoble , Grenoble , France
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, University of California at San Francisco , San Francisco, CA , USA
| | - Rajeev Kumar
- Rocky Mountain Movement Disorder Center , Denver, CO , USA
| | - Michael S Okun
- Department of Neurology, University of Florida Center for Movement Disorders and Neurorestoration , Gainesville, FL , USA
| |
Collapse
|
26
|
Tattersall TL, Stratton PG, Coyne TJ, Cook R, Silberstein P, Silburn PA, Windels F, Sah P. Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus. Nat Neurosci 2014; 17:449-54. [DOI: 10.1038/nn.3642] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/02/2014] [Indexed: 11/09/2022]
|
27
|
Pedunculopontine nucleus area oscillations during stance, stepping and freezing in Parkinson's disease. PLoS One 2013; 8:e83919. [PMID: 24386308 PMCID: PMC3875496 DOI: 10.1371/journal.pone.0083919] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 11/10/2013] [Indexed: 12/03/2022] Open
Abstract
The pedunculopontine area (PPNa) including the pedunculopontine and cuneiform nuclei, belongs to the mesencephalic locomotor region. Little is known about the oscillatory mechanisms underlying the function of this region in postural and gait control. We examined the modulations of the oscillatory activity of the PPNa and cortex during stepping, a surrogate of gait, and stance in seven Parkinson’s disease patients who received bilateral PPNa implantation for disabling freezing of gait (FOG). In the days following the surgery, we recorded behavioural data together with the local field potentials of the PPNa during sitting, standing and stepping-in-place, under two dopaminergic medication conditions (OFF and ON levodopa). Our results showed that OFF levodopa, all subjects had FOG during step-in-place trials, while ON levodopa, stepping was effective (mean duration of FOG decreasing from 61.7±36.1% to 7.3±10.1% of trial duration). ON levodopa, there was an increase in PPNa alpha (5–12 Hz) oscillatory activity and a decrease in beta (13–35 Hz) and gamma (65–90 Hz) bands activity. PPNa activity was not modulated during quiet standing and sitting. Our results confirm the role of the PPNa in the regulation of gait and suggest that, in Parkinson disease, gait difficulties could be related to an imbalance between low and higher frequencies.
Collapse
|
28
|
Fournier-Gosselin MP, Lipsman N, Saint-Cyr JA, Hamani C, Lozano AM. Regional anatomy of the pedunculopontine nucleus: relevance for deep brain stimulation. Mov Disord 2013; 28:1330-6. [PMID: 23926071 DOI: 10.1002/mds.25620] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/18/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is currently being investigated as a potential deep brain stimulation target to improve gait and posture in Parkinson's disease. This review examines the complex anatomy of the PPN region and suggests a functional mapping of the surrounding nuclei and fiber tracts that may serve as a guide to a more accurate placement of electrodes while avoiding potentially adverse effects. The relationships of the PPN were examined in different human brain atlases. Schematic representations of those structures in the vicinity of the PPN were generated and correlated with their potential stimulation effects. By providing a functional map and representative schematics of the PPN region, we hope to optimize the placement of deep brain stimulation electrodes, thereby maximizing safety and clinical efficacy.
Collapse
|
29
|
Stefani A, Peppe A, Galati S, Bassi MS, D'Angelo V, Pierantozzi M. The serendipity case of the pedunculopontine nucleus low-frequency brain stimulation: chasing a gait response, finding sleep, and cognition improvement. Front Neurol 2013; 4:68. [PMID: 23761781 PMCID: PMC3672779 DOI: 10.3389/fneur.2013.00068] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 05/22/2013] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficacious therapy for Parkinson’s disease (PD) but its effects on non-motor facets may be detrimental. The low-frequency stimulation (LFS) of the pedunculopontine nucleus (PPN or the nucleus tegmenti pedunculopontini – PPTg-) opened new perspectives. In our hands, PPTg-LFS revealed a modest influence on gait but increased sleep quality and degree of attentiveness. At odds with potential adverse events following STN-DBS, executive functions, under PPTg-ON, ameliorated. A recent study comparing both targets found that only PPTg-LFS improved night-time sleep and daytime sleepiness. Chances are that different neurosurgical groups influence either the PPN sub-portion identified as pars dissipata (more interconnected with GPi/STN) or the caudal PPN region known as pars compacta, preferentially targeting intralaminar and associative nucleus of the thalamus. Yet, the wide electrical field delivered affects a plethora of en passant circuits, and a fine distinction on the specific pathways involved is elusive. This review explores our angle of vision, by which PPTg-LFS activates cholinergic and glutamatergic ascending fibers, influencing non-motor behaviors.
Collapse
Affiliation(s)
- Alessandro Stefani
- Department of Neuroscience, "Tor Vergata" University , Rome , Italy ; IRCCS, Fondazione Santa Lucia , Rome , Italy
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Hazrati LN, Wong JC, Hamani C, Lozano AM, Poon YY, Dostrovsky JO, Hutchison WD, Zadikoff C, Moro E. Clinicopathological study in progressive supranuclear palsy with pedunculopontine stimulation. Mov Disord 2012; 27:1304-7. [DOI: 10.1002/mds.25123] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/07/2012] [Accepted: 06/28/2012] [Indexed: 02/02/2023] Open
|
32
|
Insola A, Valeriani M, Mazzone P. Targeting the Pedunculopontine Nucleus. Oper Neurosurg (Hagerstown) 2012; 71:96-103. [DOI: 10.1227/neu.0b013e318249c726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Pedunculopontine tegmental nucleus (PPTg) deep brain stimulation (DBS) has been used in patients with Parkinson disease.
OBJECTIVE:
To verify the position of the DBS lead within the pons during PPTg targeting.
METHODS:
In 10 Parkinson disease patients undergoing electrode implantation in the PPTg, somatosensory evoked potentials were recorded after median nerve stimulation from the 4 DBS electrode contacts and from 2 scalp leads placed in the frontal and parietal regions.
RESULTS:
The DBS electrode recorded a P16 potential (latency at contact 0, 16.33 ± 0.76 ms). There was a P16 latency shift of 0.18 ± 0.07 ms from contact 0 (lower) to contact 3 (upper). The scalp electrodes recorded the P14 far-field response (latency, 15.44 ± 0.63 ms) and the cortical N20 potential (latency, 21.58 ± 1.42 ms). The P16 potentials recorded by the intracranial electrode contacts are generated by the volley traveling along the medial lemniscus, whereas the scalp P14 potential represents a far-field response generated at the Obex level. Considering that the distance between the electrode contacts 0 and 3 is 6 mm, the distance of the electrode contact 0 from the Obex (ΔObex) was calculated by the equation: ΔObex = 6 × Δlatency P14- PPTg0/Δlatency PPTg0-PPTg3. The Obex-to-brainstem electrode distance obtained by the neurophysiological method confirmed that the electrode was located within the pons in all patients. Moreover, this distance was very similar to that issued from the individual brain magnetic resonance imaging.
CONCLUSION:
Somatosensory evoked potentials may be a helpful tool for calculating the macroelectrode position within the pons during PPTg targeting.
Collapse
Affiliation(s)
- Angelo Insola
- Unità Operativa di Neurofisiopatologia, CTO, Rome, Italy
| | - Massimiliano Valeriani
- Divisione di Neurologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Paolo Mazzone
- Unità Operativa di Neurochirurgia Funzionale e Stereotassica, CTO, Rome, Italy
| |
Collapse
|
33
|
Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012; 37:213-46. [PMID: 21956442 PMCID: PMC3238085 DOI: 10.1038/npp.2011.212] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/13/2022]
Abstract
The demonstration that dopamine loss is the key pathological feature of Parkinson's disease (PD), and the subsequent introduction of levodopa have revolutionalized the field of PD therapeutics. This review will discuss the significant progress that has been made in the development of new pharmacological and surgical tools to treat PD motor symptoms since this major breakthrough in the 1960s. However, we will also highlight some of the challenges the field of PD therapeutics has been struggling with during the past decades. The lack of neuroprotective therapies and the limited treatment strategies for the nonmotor symptoms of the disease (ie, cognitive impairments, autonomic dysfunctions, psychiatric disorders, etc.) are among the most pressing issues to be addressed in the years to come. It appears that the combination of early PD nonmotor symptoms with imaging of the nigrostriatal dopaminergic system offers a promising path toward the identification of PD biomarkers, which, once characterized, will set the stage for efficient use of neuroprotective agents that could slow down and alter the course of the disease.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
34
|
Gut NK, Winn P. The Role of the Pedunculopontine Tegmental Nucleus in Motor Disorders. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-1-61779-301-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
35
|
Yeo SS, Ahn SH, Choi BY, Chang CH, Lee J, Jang SH. Contribution of the Pedunculopontine Nucleus on Walking in Stroke Patients. Eur Neurol 2011; 65:332-7. [DOI: 10.1159/000324152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/05/2011] [Indexed: 11/19/2022]
|
36
|
Yeo SS, Kim SH, Ahn YH, Son SM, Jang SH. Anatomical location of the pedunculopontine nucleus in the human brain: diffusion tensor imaging study. Stereotact Funct Neurosurg 2011; 89:152-6. [PMID: 21494066 DOI: 10.1159/000324890] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/07/2011] [Indexed: 11/19/2022]
Abstract
We investigated the anatomical location of the pedunculopontine nucleus (PPN) in the human brain using diffusion tensor imaging. Forty normal healthy subjects were recruited. To confirm the boundary of the PPN, we analyzed the superior cerebellar peduncle and medial lemniscus using DTI-Studio software. We identified the PPN on red green blue (RGB) images, and defined four points of the PPN and four boundaries of the midbrain: point a - the most anterior point, point b - the most posterior point, point c - the most medial point, point d - the most lateral point; anterior boundary - the line of the most posterior point of the interpeduncular fossa, posterior boundary - the line of the upper part of the inferior colliculus, lateral boundary - the line of the most lateral point of the midbrain, medial boundary - the line of the midline of the midbrain. Points a and b were located at an average of 20.19 and 30.52% from the anterior boundary, respectively. By contrast, points c and d were located at an average of 22.50 and 41.65% from the medial boundary, respectively. We believe that the methodology and data of this study would be helpful in research and procedures on the PPN.
Collapse
Affiliation(s)
- Sang Seok Yeo
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Taegu, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Mazzone P, Sposato S, Insola A, Scarnati E. The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery. J Neural Transm (Vienna) 2011; 118:1431-51. [DOI: 10.1007/s00702-011-0593-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
38
|
The pedunculopontine nucleus as a target for deep brain stimulation. J Neural Transm (Vienna) 2010; 118:1461-8. [PMID: 21194002 DOI: 10.1007/s00702-010-0547-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
The pedunculopontine nucleus (PPN) is a brain stem locomotive center that is also involved in the processing of sensory and behavioral information. The PPN has been recently proposed as a potential target for the treatment of axial symptoms in Parkinson's disease (PD). To date, results of the first series of PD patients treated with PPN deep brain stimulation (DBS) have shown promising results. In this article, we review some of the basic aspects of the PPN as a target and the outcome of the recently published clinical trials.
Collapse
|
39
|
Scarnati E, Florio T, Capozzo A, Confalone G, Mazzone P. The pedunculopontine tegmental nucleus: implications for a role in modulating spinal cord motoneuron excitability. J Neural Transm (Vienna) 2010; 118:1409-21. [PMID: 21161714 DOI: 10.1007/s00702-010-0532-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/06/2010] [Indexed: 12/19/2022]
Abstract
There is evidence that deep brain stimulation (DBS) of the pedunculopontine tegmental nucleus (PPTg) improves parkinsonian motor signs. The mechanisms that mediate these effects and the modifications that occur in the PPTg in Parkinson's disease (PD) are not fully known and are the object of current debate. The aim of this paper was to critically review available data with respect to (1) the presence of PPTg neurons linked to reticulospinal projections, (2) the involvement of these neurons in modulating spinal reflexes, and (3) the participation of fibers close to or within the PPTg region in such modulation. The PPTg neurons are distributed in a large pontotegmental region, stimulation of which can evoke activity in hindlimb, shoulder and neck muscles, and potentiate motor responses evoked by stimulation of dorsal roots. This influence seems to be carried out by fast-conducting descending fibers, which likely run in the medial reticulospinal pathway. It is yet unclear which neurotransmitters are involved and on which elements of the gray matter of the spinal cord PPTg fibers synapse. The modulation of spinal cord activity which can be achieved by stimulating the PPTg region seems to be mediated not only by PPTg neurons, but also by tecto-reticular fibers which run in the pontotegmental area, and which likely are activated during PPTg-DBS. The importance of these fibers is discussed taking into account the degeneration of PPTg neurons in PD and the benefits in gait and postural control that PPTg-DBS exerts in PD. The potential usefulness of PPTg-DBS in other neurodegenerative disorders characterized by neuronal loss in the brainstem is also considered.
Collapse
Affiliation(s)
- Eugenio Scarnati
- Department of Biomedical Sciences and Technologies (STB), University of L'Aquila, Via Vetoio Coppito 2, 67100, L'Aquila, Italy.
| | | | | | | | | |
Collapse
|
40
|
Alam M, Schwabe K, Krauss JK. The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 2010; 134:11-23. [PMID: 21147837 DOI: 10.1093/brain/awq322] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, the pedunculopontine nucleus has been highlighted as a target for deep brain stimulation for the treatment of freezing of postural instability and gait disorders in Parkinson's disease and progressive supranuclear palsy. There is great controversy, however, as to the exact location of the optimal site for stimulation. In this review, we give an overview of anatomy and connectivity of the pedunculopontine nucleus area in rats, cats, non-human primates and humans. Additionally, we report on the behavioural changes after chemical or electrical manipulation of the pedunculopontine nucleus. We discuss the relation to adjacent regions of the pedunculopontine nucleus, such as the cuneiform nucleus and the subcuneiform nucleus, which together with the pedunculopontine nucleus are the main areas of the mesencephalic locomotor region and play a major role in the initiation of gait. This information is discussed with respect to the experimental designs used for research purposes directed to a better understanding of the circuitry pathway of the pedunculopontine nucleus in association with basal ganglia pathology, and with respect to deep brain stimulation of the pedunculopontine nucleus area in humans.
Collapse
Affiliation(s)
- Mesbah Alam
- Department of Neurosurgery, Medical University of Hannover, Carl-Neuberg-Str 1, 30625 Hannover, Germany
| | | | | |
Collapse
|