1
|
Ayesiga I, Okoro LN, Taremba C, Yeboah MO, Naab JTM, Anyango RM, Adekeye J, Kahwa I. Genetic variability in snake venom and its implications for antivenom development in sub-Saharan Africa. Trans R Soc Trop Med Hyg 2025; 119:400-406. [PMID: 39749534 DOI: 10.1093/trstmh/trae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 09/19/2024] [Indexed: 01/04/2025] Open
Abstract
Snake venom, a complex mixture of proteins, has attracted human attention for centuries due to its associated mortality, morbidity and other therapeutic properties. In sub-Saharan Africa (SSA), where snakebites pose a significant health risk, understanding the genetic variability of snake venoms is crucial for developing effective antivenoms. The wide geographic distribution of venomous snake species in SSA countries demonstrates the need to develop specific and broad antivenoms. However, the development of broad antivenoms has been hindered by different factors, such as antivenom cross-reactivity and polygenic paratopes. While specific antivenoms have been hindered by the numerous snake species across the SSA region, current antivenoms, such as SAIMR polyvalent and Premium Serums & Vaccines, exhibit varying degrees of cross-reactivity. Such ability to cross-react enables the antivenoms to target multiple components from the different snake species. The advent of biotechnological innovations, including recombinant antibodies, small-molecule drugs, monoclonal antibodies and synthetic antivenoms, presents options for eliminating limitations associated with traditional plasma-derived antivenoms. However, challenges still persist, especially in SSA, in addressing genetic variability, as evidenced by inadequate testing capacity and limited genomic research facilities. This comprehensive review explores the genetic variability of snake venoms in SSA, emphasizing the venom composition of various snake species and their interactions. This information is critical in developing multiple strategies during antivenom development. Finally, it offers information concerning the need for extensive collaborative engagements, technological advancements and comprehensive genomic evaluations to produce targeted and effective antivenoms.
Collapse
Affiliation(s)
- Innocent Ayesiga
- Department of Research, Ubora Foundation Africa, Kampala 759125, Uganda
| | - Lenz N Okoro
- Department of Community Medicine, David Umahi Federal University Teaching Hospital, Uburu, Ebonyi State 480101, Nigeria
| | - Chirigo Taremba
- National University of Science and Technology, Bulawayo 00000, Zimbabwe
| | - Michael O Yeboah
- School of Public Health, University of Port Harcourt, River State 500001, Nigeria
| | - Justine T M Naab
- School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi GA107, Ghana
| | - Ruphline M Anyango
- Department of Veterinary Tropical Medicine, University of Pretoria, Pretoria 0002, South Africa
| | - John Adekeye
- Virology clinic, Olabisi Onabanjo University Teaching Hospital, Sagamu, Ogun state 111103, Nigeria
| | - Ivan Kahwa
- Pharm-Biotechnology and Traditional Medicine Centre (PHARMBIOTRAC), Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 40006, Uganda
| |
Collapse
|
2
|
Alfa-Ibrahim Adio A, Malami I, Lawal N, Jega AY, Abubakar B, Bello MB, Ibrahim KG, Abubakar MB, Abdussamad A, Imam MU. Neurotoxic snakebites in Africa: Clinical implications, therapeutic strategies, and antivenom efficacy. Toxicon 2024; 247:107811. [PMID: 38917892 DOI: 10.1016/j.toxicon.2024.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Snakebite is a significant health concern in Africa, particularly due to neurotoxic envenomation which can lead to neuromuscular paralysis and respiratory failure. In Nigeria, snakes from the Elapidae family are a notable cause of envenomation cases, though these incidents are underreported. This review examined case reports of neurotoxic envenomation in Africa, highlighting the clinical impacts and the efficacy of available antivenoms. Preclinical studies showed that the polyvalent antivenom from the South African Institute for Medical Research (SAIMR) was highly effective against neurotoxicity with a protective efficacy (R) of 1346.80 mg/mL, while clinical assessment emphasized the need for high-dose antivenom therapy along with supportive measures like mechanical ventilation. Unlike hemorrhagic envenomation, where antivenom promptly resolves bleeding, neurotoxic cases often require additional interventions. The review underscores the necessity for tailored approaches in antivenom therapy to address the complexities of neurotoxic snakebites and reduce their public health burden in Africa.
Collapse
Affiliation(s)
- Abdulbaki Alfa-Ibrahim Adio
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Nafiu Lawal
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Amina Yusuf Jega
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria; Vaccine Development Unit, Infectious Disease Research Development, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa, 13110, Jordan; Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Abdussamad Abdussamad
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
| |
Collapse
|
3
|
Werner RM, Soffa AN. Considerations for the development of a field-based medical device for the administration of adjunctive therapies for snakebite envenoming. Toxicon X 2023; 20:100169. [PMID: 37661997 PMCID: PMC10474190 DOI: 10.1016/j.toxcx.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023] Open
Abstract
The timely administration of antivenom is the most effective method currently available to reduce the burden of snakebite envenoming (SBE), a neglected tropical disease that most often affects rural agricultural global populations. There is increasing interest in the development of adjunctive small molecule and biologic therapeutics that target the most problematic venom components to bridge the time-gap between initial SBE and the administration antivenom. Unique combinations of these therapeutics could provide relief from the toxic effects of regional groupings of medically relevant snake species. The application a PRISMA/PICO literature search methodology demonstrated an increasing interest in the rapid administration of therapies to improve patient symptoms and outcomes after SBE. Advice from expert interviews and considerations regarding the potential routes of therapy administration, anatomical bite location, and species-specific venom delivery have provided a framework to identify ideal metrics and potential hurdles for the development of a field-based medical device that could be used immediately after SBE to deliver adjunctive therapies. The use of subcutaneous (SC) or intramuscular (IM) injection were identified as potential routes of administration of both small molecule and biologic therapies. The development of a field-based medical device for the delivery of adjunctive SBE therapies presents unique challenges that will require a collaborative and transdisciplinary approach to be successful.
Collapse
|
4
|
Khourcha S, Hilal I, Elbejjaj I, Karkouri M, Safi A, Hmyene A, Oukkache N. Assessing the Efficacy of Monovalent and Commercialized Antivenoms for Neutralizing Moroccan Cobra Naja haje Venom: A Comparative Study. Trop Med Infect Dis 2023; 8:304. [PMID: 37368722 DOI: 10.3390/tropicalmed8060304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
In Morocco, eight species of venomous snakes belonging to the Viperidae and Elapidae families are responsible for severe envenomation cases. The species from the Elapidae family is only represented by the medically relevant cobra Naja haje, which is widely distributed in North Africa. However, there is little information on the systemic effects of Moroccan cobra venom on vital organs due to regional variations. It has been demonstrated that the venom of Naja haje from Egypt causes hemorrhage, while the venom of the Moroccan cobra is neurotoxic and devoid of systemic bleeding. This variability is known to significantly influence treatment efficacy against Naja haje cobra bites in the Middle East. In this study, we examined the pathophysiological mechanisms responsible for the lethality induced by Naja haje venom, as well as the evaluation of the neutralizing capacity of two antivenoms; the monospecific antivenom made for Naja haje only and the antivenom marketed in the Middle East and North Africa. We first determined the toxicity of Naja haje venom by LD50 test, then compared the neutralizing capacity of the two antivenoms studied by determining the ED50. We also performed histological analysis on Swiss mice envenomed and treated with these antivenoms to observe signs of cobra venom envenomation and the degree of reduction of induced systemic alterations. The results showed significant differences between both antivenoms in terms of neutralization. The monospecific antivenom was four times more effective than the marketed antivenom. These results were confirmed by a histological study, which showed that monospecific antivenoms neutralized severe signs of mortality, such as congestion of blood vessels in the heart and kidneys, pulmonary and renal edema, cytoplasmic vacuolization of hepatocytes in the liver, and infiltration of inflammatory cells in the brain and spleen. However, the polyvalent antivenom failed to protect all severe lesions induced by Naja haje venom in mice. These findings highlight the negative impact of geographic variation on the effectiveness of conventional antivenom therapy and confirm the need for a specific Naja haje antivenom for the effective treatment of cobra envenomation in Morocco.
Collapse
Affiliation(s)
- Soukaina Khourcha
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Technologies of Mohammedia, Hassan II University, Mohammedia 20650, Morocco
| | - Ines Hilal
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Technologies of Mohammedia, Hassan II University, Mohammedia 20650, Morocco
| | - Iatimad Elbejjaj
- Laboratory of Pathological Anatomy, University Hospital Center Ibn Rochd, Casablanca 20250, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, University Hospital Center Ibn Rochd, Casablanca 20250, Morocco
| | - Amal Safi
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Technologies of Mohammedia, Hassan II University, Mohammedia 20650, Morocco
| | - Abdelaziz Hmyene
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Technologies of Mohammedia, Hassan II University, Mohammedia 20650, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco
| |
Collapse
|
5
|
Chowdhury A, Lewin MR, Zdenek CN, Carter R, Fry BG. The Relative Efficacy of Chemically Diverse Small-Molecule Enzyme-Inhibitors Against Anticoagulant Activities of African Spitting Cobra ( Naja Species) Venoms. Front Immunol 2021; 12:752442. [PMID: 34691069 PMCID: PMC8529177 DOI: 10.3389/fimmu.2021.752442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
African spitting cobras are unique among cobras for their potent anticoagulant venom activity arising from strong inhibition of Factor Xa. This anticoagulant effect is exerted by venom phospholipase A2 (Group I PLA2) toxins whose activity contributes to the lethality of these species. This anticoagulant toxicity is particularly problematic as it is not neutralized by current antivenoms. Previous work demonstrated this trait for Naja mossambica, N. nigricincta, N. nigricollis, and N. pallida. The present work builds upon previous research by testing across the full taxonomical range of African spitting cobras, demonstrating that N. ashei, N. katiensis, and N. nubiae are also potently anticoagulant through the inhibition of Factor Xa, and therefore the amplification of potent anticoagulant activity occurred at the base of the African spitting cobra radiation. Previous work demonstrated that the enzyme-inhibitor varespladib was able to neutralize this toxic action for N. mossambica, N. nigricincta, N. nigricollis, and N. pallida venoms. The current work demonstrates that varespladib was also able to neutralize N. ashei, N. katiensis, and N. nubiae. Thus varespladib is shown to have broad utility across the full range of African spitting cobras. In addition, we examined the cross-reactivity of the metalloprotease inhibitor prinomastat, which had been previously intriguingly indicated as being capable of neutralizing viperid venom PLA2 (Group II PLA2). In this study prinomastat inhibited the FXa-inhibiting PLA2 toxins of all the African spitting cobras at the same concentration at which it has been shown to inhibit metalloproteases, and thus was comparably effective in its cross-reactivity. In addition we showed that the metalloprotease-inhibitor marimastat was also able to cross-neutralize PLA2 but less effectively than prinomastat. Due to logistical (cold-chain requirement) and efficacy (cross-reactivity across snake species) limitations of traditional antivenoms, particularly in developing countries where snakebite is most common, these small molecule inhibitors (SMIs) might hold great promise as initial, field-based, treatments for snakebite envenoming as well as addressing fundamental limitations of antivenom in the clinical setting where certain toxin effects are unneutralized.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia.,Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Matthew R Lewin
- California Academy of Sciences, San Francisco, CA, United States.,Ophirex, Inc., Corte Madera, CA, United States
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
6
|
Damm M, Hempel BF, Süssmuth RD. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins (Basel) 2021; 13:toxins13060427. [PMID: 34204565 PMCID: PMC8235416 DOI: 10.3390/toxins13060427] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows.
Collapse
Affiliation(s)
- Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, (BCRT), 10117 Berlin, Germany;
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24205
| |
Collapse
|
7
|
Knudsen C, Jürgensen JA, Føns S, Haack AM, Friis RUW, Dam SH, Bush SP, White J, Laustsen AH. Snakebite Envenoming Diagnosis and Diagnostics. Front Immunol 2021; 12:661457. [PMID: 33995385 PMCID: PMC8113877 DOI: 10.3389/fimmu.2021.661457] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Snakebite envenoming is predominantly an occupational disease of the rural tropics, causing death or permanent disability to hundreds of thousands of victims annually. The diagnosis of snakebite envenoming is commonly based on a combination of patient history and a syndromic approach. However, the availability of auxiliary diagnostic tests at the disposal of the clinicians vary from country to country, and the level of experience within snakebite diagnosis and intervention may be quite different for clinicians from different hospitals. As such, achieving timely diagnosis, and thus treatment, is a challenge faced by treating personnel around the globe. For years, much effort has gone into developing novel diagnostics to support diagnosis of snakebite victims, especially in rural areas of the tropics. Gaining access to affordable and rapid diagnostics could potentially facilitate more favorable patient outcomes due to early and appropriate treatment. This review aims to highlight regional differences in epidemiology and clinical snakebite management on a global scale, including an overview of the past and ongoing research efforts within snakebite diagnostics. Finally, the review is rounded off with a discussion on design considerations and potential benefits of novel snakebite diagnostics.
Collapse
Affiliation(s)
- Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- BioPorto Diagnostics A/S, Hellerup, Denmark
| | - Jonas A. Jürgensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sofie Føns
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aleksander M. Haack
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rasmus U. W. Friis
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Søren H. Dam
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sean P. Bush
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Julian White
- Toxinology Department, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Tan KY, Wong KY, Tan NH, Tan CH. Quantitative proteomics of Naja annulifera (sub-Saharan snouted cobra) venom and neutralization activities of two antivenoms in Africa. Int J Biol Macromol 2020; 158:S0141-8130(20)33035-X. [PMID: 32339578 DOI: 10.1016/j.ijbiomac.2020.04.173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022]
Abstract
Envenomation by Naja annulifera (snouted cobra), a non-spitting African cobra, can result in local tissue damage and fatal paralysis but a species-specific antivenom treatment is currently lacking. In this study, we investigated the quantitative proteome of N. annulifera venom, incorporating HPLC and LC-MS/MS to elucidate the venom toxicity. The immunoreactivities and in vivo neutralization activities of two hetero-specific antivenom products (Premium Serums Pan Africa polyvalent antivenom, PANAF and VINS African polyvalent antivenom, VAPAV) against the venom were subsequently examined. N. annulifera venom comprises 10 toxin families, with three-finger toxin (3FTx) being the most abundantly expressed (~78%). Within 3FTx, cytotoxin is the most dominant form and made up three-quarter of the venom bulk (~74%), whereas alpha-neurotoxins constitute <4% of the total venom proteins. Phospholipase A2 was undetected in the venom proteome, consistent with the unusual absence of PLA2 from the venoms of cobras in the Uraeus subgenus. In ELISA, PANAF and VAPAV showed comparable immunoreactivity toward the protein antigens of N. annulifera venom. These antivenoms, despite being raised against hetero-specific venoms, were capable of cross-neutralizing the lethal effect of N. annulifera venom in mice, with PANAF being marginally more potent.
Collapse
Affiliation(s)
- Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kin Ying Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Breeze J. Dispatches from the editor: highlights of the September 2018 issue. J ROY ARMY MED CORPS 2018; 164:315. [PMID: 30206103 DOI: 10.1136/jramc-2018-001054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 11/03/2022]
Affiliation(s)
- John Breeze
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK .,Division of Plastic, Maxillofacial, and Oral Surgery, Duke University Hospital, Durham, USA
| |
Collapse
|