1
|
Ishii T, Fujimura S, Takao H, Uchiyama Y, Okudaira T, Ishibashi T, Otani K, Karagiozov K, Fukudome K, Yamamoto M, Murayama Y. Hemodynamic and Morphological Factors Related to Coil Compaction in Basilar Artery Tip Aneurysms. World Neurosurg 2021; 155:e95-e110. [PMID: 34389523 DOI: 10.1016/j.wneu.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Coil compaction is directly related to the degree of cerebral aneurysmal recanalization. The Degree of Recanalization (DoR) was quantified by measuring the volume vacated by coil deformation. The purpose of this study was to clarify the hemodynamic and morphological factors associated with coil compaction. METHODS Computational fluid dynamics (CFD) simulations were performed on 28 middle size (5-10 mm), unruptured basilar artery tip aneurysms. The DoR was measured by comparing the coil mass shape obtained from three-dimensional digital subtraction angiography data immediately after coil embolization and again within 1 to 2 years of follow-up. Deployed coils were modeled using a virtual coiling technique for CFD simulations. Hemodynamic and morphological factors to predict the DoR were derived using multiple linear regression. RESULTS Aneurysmal neck area, the maximum pressure generated on the neck surface after coil embolization, and the high-pressure position on the neck surface predicted DoR with statistical significance (p<0.001, p<0.001, p=0.004, respectively). DoR tended to increase when the neck area was large, the pressure generated on the coils was high, and the high-pressure position was close to the center of the neck surface. The volume embolization ratio was not statistically relevant for the DoR in the cases of this study. CONCLUSIONS Coil compaction occurs in cerebral aneurysms with a wide neck, high pressure generated on the coils, and high pressure in the center of the neck surface. Establishing the DoR can contribute to the prediction of recanalization after coil embolization.
Collapse
Affiliation(s)
- Takumi Ishii
- Graduate School of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Department of Innovation for Medical Information Technology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Soichiro Fujimura
- Department of Innovation for Medical Information Technology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan; Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiroyuki Takao
- Graduate School of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Department of Innovation for Medical Information Technology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan; Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yuya Uchiyama
- Graduate School of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Department of Innovation for Medical Information Technology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Takuma Okudaira
- Graduate School of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Department of Innovation for Medical Information Technology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Toshihiro Ishibashi
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Katharina Otani
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan; Siemens Healthcare K.K. 1-11-1 Osaki, Shinagawa-ku, Tokyo 141-8644, Japan
| | - Kostadin Karagiozov
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Koji Fukudome
- Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Makoto Yamamoto
- Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
2
|
Fast virtual coiling algorithm for intracranial aneurysms using pre-shape path planning. Comput Biol Med 2021; 134:104496. [PMID: 34077817 DOI: 10.1016/j.compbiomed.2021.104496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 09/30/2022]
Abstract
To aid in predicting and improving treatment outcome of endovascular coiling of intracranial aneurysms, simulation of patient-specific coil deployment should be both accurate and fast. We developed a fast virtual coiling algorithm called Pre-shape Path Planning (P3). It captures the mechanical propensity of a released coil to restore its pre-shape for bending energy minimization, producing coils without unrealistic kinks and bends. A coil is discretized into finite-length segments and extruded from the delivery catheter segment-by-segment following a generic coil pre-shape. With the release of each segment, coil-wall and coil-coil collisions are detected and resolved. Modeling of each case took seconds to minutes. To test the algorithm, we evaluated its output against the literature, experiments, and patient angiograms. The periphery-to-core ratio of coils deployed by P3 decreased with increasing coil packing density, consistent with observations in the literature. Coils deployed by P3 compared well with in vitro experiments, free from unphysical kinks and loops that arose from previous virtual coiling algorithms. Simulations of coiling in four patient-specific aneurysms agreed well with the patient angiograms. To test the influence of coil pre-shape on P3, we performed hemodynamic simulations in aneurysms with coils deployed by P3 using the generic pre-shape, P3 using a coil-specific pre-shape, and full finite-element-method simulation. We found that the generic pre-shape was sufficient to produce results comparable to virtual coiling by finite element modeling. Based on these findings, P3 can rapidly simulate coiling in patient-specific aneurysms with good accuracy and is thus a potential candidate for clinical treatment planning.
Collapse
|
3
|
Damiano RJ, Tutino VM, Lamooki SR, Paliwal N, Dargush GF, Davies JM, Siddiqui AH, Meng H. Improving accuracy for finite element modeling of endovascular coiling of intracranial aneurysm. PLoS One 2019; 14:e0226421. [PMID: 31881029 PMCID: PMC6934293 DOI: 10.1371/journal.pone.0226421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/10/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Computer modeling of endovascular coiling intervention for intracranial aneurysm could enable a priori patient-specific treatment evaluation. To that end, we previously developed a finite element method (FEM) coiling technique, which incorporated simplified assumptions. To improve accuracy in capturing real-life coiling, we aimed to enhance the modeling strategies and experimentally test whether improvements lead to more accurate coiling simulations. METHODS We previously modeled coils using a pre-shape based on mathematical curves and mechanical properties based on those of platinum wires. In the improved version, to better represent the physical properties of coils, we model coil pre-shapes based on how they are manufactured, and their mechanical properties based on their spring-like geometric structures. To enhance the deployment mechanics, we include coil advancement to the aneurysm in FEM simulations. To test if these new strategies produce more accurate coil deployments, we fabricated silicone phantoms of 2 patient-specific aneurysms in duplicate, deployed coils in each, and quantified coil distributions from intra-aneurysmal cross-sections using coil density (CD) and lacunarity (L). These deployments were simulated 9 times each using the original and improved techniques, and CD and L were calculated for cross-sections matching those in the experiments. To compare the 2 simulation techniques, Euclidean distances (dMin, dMax, and dAvg) between experimental and simulation points in standardized CD-L space were evaluated. Univariate tests were performed to determine if these distances were significantly different between the 2 simulations. RESULTS Coil deployments using the improved technique agreed better with experiments than the original technique. All dMin, dMax, and dAvg values were smaller for the improved technique, and the average values across all simulations for the improved technique were significantly smaller than those from the original technique (dMin: p = 0.014, dMax: p = 0.013, dAvg: p = 0.045). CONCLUSION Incorporating coil-specific physical properties and mechanics improves accuracy of FEM simulations of endovascular intracranial aneurysm coiling.
Collapse
Affiliation(s)
- Robert J. Damiano
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Canon Stroke & Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Vincent M. Tutino
- Canon Stroke & Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Saeb R. Lamooki
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Canon Stroke & Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Nikhil Paliwal
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Canon Stroke & Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Gary F. Dargush
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Jason M. Davies
- Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Adnan H. Siddiqui
- Canon Stroke & Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Hui Meng
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Canon Stroke & Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Horn JD, Maitland DJ, Hartman J, Ortega JM. A computational thrombus formation model: application to an idealized two-dimensional aneurysm treated with bare metal coils. Biomech Model Mechanobiol 2018; 17:1821-1838. [DOI: 10.1007/s10237-018-1059-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
|
5
|
Otani T, Shindo T, Ii S, Hirata M, Wada S. Effect of Local Coil Density on Blood Flow Stagnation in Densely Coiled Cerebral Aneurysms: A Computational Study Using a Cartesian Grid Method. J Biomech Eng 2018; 140:2671737. [DOI: 10.1115/1.4039150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 11/08/2022]
Abstract
Aneurysm recurrence is the most critical concern following coil embolization of a cerebral aneurysm. Adequate packing density (PD) and coil uniformity are believed necessary to achieve sufficient flow stagnation, which decreases the risk of aneurysm recurrence. The effect of coil distribution on the extent of flow stagnation, however, especially in cases of dense packing (high PD), has received less attention. Thus, the cause of aneurysm recurrence despite dense packing is still an open question. The primary aim of this study is to evaluate the effect of local coil density on the extent of blood flow stagnation in densely coiled aneurysms. For this purpose, we developed a robust computational framework to determine blood flow using a Cartesian grid method, by which the complex fluid pathways in coiled aneurysms could be flexibly treated using an implicit function. This tool allowed us to conduct blood flow analyses in two patient-specific geometries with 50 coil distribution patterns in each aneurysm at clinically adequate PD. The results demonstrated that dense packing in the aneurysm may not necessarily block completely the inflow into the aneurysm and local flow that formed in the neck region, whose strength was inversely related to this local PD. This finding suggests that local coil density in the neck region still plays an important role in disturbing the remaining local flow, which possibly prevents thrombus formation in a whole aneurysm sac, increasing the risk of aneurysm regrowth and subsequent recurrence.
Collapse
Affiliation(s)
- Tomohiro Otani
- Mem. ASME Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka-shi 560-8531, Osaka, Japan e-mail:
| | - Takuya Shindo
- Department of Systems Science, School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka-shi 560-8531, Osaka, Japan e-mail:
| | - Satoshi Ii
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka-shi 560-8531, Osaka, Japan e-mail:
| | - Masayuki Hirata
- Department of Neurosurgery, Graduate School of Medicine and Global Center for Medical Engineering and Informatics (MEI Center), Osaka University, 2-2 Yamadaoka, Suita-shi 560-0871, Osaka, Japan e-mail:
| | - Shigeo Wada
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka-shi 560-8531, Osaka, Japan e-mail:
| |
Collapse
|
6
|
Sadasivan C, Swartwout E, Kappel AD, Woo HH, Fiorella DJ, Lieber BB. In vitro measurement of the permeability of endovascular coils deployed in cerebral aneurysms. J Neurointerv Surg 2018; 10:896-900. [PMID: 29298858 DOI: 10.1136/neurintsurg-2017-013481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND PURPOSE Aneurysm recurrence is the primary limitation of endovascular coiling treatment for cerebral aneurysms. Coiling is currently quantified by a volumetric porosity measure called packing density (pd). Blood flow through a coil mass depends on the permeability of the coil mass, and not just its pd. The permeability of coil masses has not yet been quantified. Here we measure coil permeability with a traditional falling-head permeameter modified to incorporate idealized aneurysms. METHODS Silicone replicas of idealized aneurysms were manufactured with three different aneurysm diameters (4, 5, and 8 mm). Four different coil types (Codman Trufill Orbit, Covidien Axium, Microvention Microplex 10, and Penumbra 400) were deployed into the aneurysms with a target pd of 35%. Coiled replicas were installed on a falling-head permeameter setup and the time taken for a column of fluid above the aneurysm to drop a certain height was recorded. Permeability of the samples was calculated based on a simple modification of the traditional permeameter equation to incorporate a spherical aneurysm. RESULTS The targeted 35% pd was achieved for all samples (35%±1%, P=0.91). Coil permeabilities were significantly different from each other (P<0.001) at constant pd. Microplex 10 coils had the lowest permeability of all coil types. Data suggest a trend of increasing permeability with thicker coil wire diameter (not statistically significant). CONCLUSIONS A simple in vitro setup was developed to measure the permeabilities of coil masses based on traditional permeametry. Coil permeability should be considered when evaluating the hemodynamic efficacy of coiling instead of just packing density. Coils made of thicker wires may be more permeable, and thus less effective, than coils made from thinner wires. Whether aneurysm recurrence is affected by coil wire diameter or permeability needs to be confirmed with clinical trials.
Collapse
Affiliation(s)
- Chander Sadasivan
- Department of Neurological Surgery, Stony Brook University, Stony Brook, New York, USA
| | - Erica Swartwout
- Department of Neurological Surgery, Stony Brook University, Stony Brook, New York, USA
| | - Ari D Kappel
- Department of Neurological Surgery, Stony Brook University, Stony Brook, New York, USA
| | - Henry H Woo
- Department of Neurological Surgery, Stony Brook University, Stony Brook, New York, USA
| | - David J Fiorella
- Department of Neurological Surgery, Stony Brook University, Stony Brook, New York, USA
| | - Barry B Lieber
- Department of Neurological Surgery, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
7
|
Otani T, Ii S, Shigematsu T, Fujinaka T, Hirata M, Ozaki T, Wada S. Computational study for the effects of coil configuration on blood flow characteristics in coil-embolized cerebral aneurysm. Med Biol Eng Comput 2016; 55:697-710. [DOI: 10.1007/s11517-016-1541-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 06/29/2016] [Indexed: 11/28/2022]
|
8
|
Damiano RJ, Ma D, Xiang J, Siddiqui AH, Snyder KV, Meng H. Finite element modeling of endovascular coiling and flow diversion enables hemodynamic prediction of complex treatment strategies for intracranial aneurysm. J Biomech 2015; 48:3332-40. [PMID: 26169778 DOI: 10.1016/j.jbiomech.2015.06.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/13/2015] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
Abstract
Endovascular interventions using coil embolization and flow diversion are becoming the mainstream treatment for intracranial aneurysms (IAs). To help assess the effect of intervention strategies on aneurysm hemodynamics and treatment outcome, we have developed a finite-element-method (FEM)-based technique for coil deployment along with our HiFiVS technique for flow diverter (FD) deployment in patient-specific IAs. We tested four clinical intervention strategies: coiling (1-8 coils), single FD, FD with adjunctive coils (1-8 coils), and overlapping FDs. By evaluating post-treatment hemodynamics using computational fluid dynamics (CFD), we compared the flow-modification performance of these strategies. Results show that a single FD provides more reduction in inflow rate than low packing density (PD) coiling, but less reduction in average velocity inside the aneurysm. Adjunctive coils add no additional reduction of inflow rate beyond a single FD until coil PD exceeds 11%. This suggests that the main role of FDs is to divert inflow, while that of coils is to create stasis in the aneurysm. Overlapping FDs decreases inflow rate, average velocity, and average wall shear stress (WSS) in the aneurysm sac, but adding a third FD produces minimal additional reduction. In conclusion, our FEM-based techniques for virtual coiling and flow diversion enable recapitulation of complex endovascular intervention strategies and detailed hemodynamics to identify hemodynamic factors that affect treatment outcome.
Collapse
Affiliation(s)
- Robert J Damiano
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Toshiba Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Ding Ma
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Toshiba Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Jianping Xiang
- Toshiba Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Adnan H Siddiqui
- Toshiba Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Radiology, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Kenneth V Snyder
- Toshiba Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Radiology, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Hui Meng
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Toshiba Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Biomedical Engineering, University at Buffalo,State University of New York, Buffalo, NY 14203, USA.
| |
Collapse
|
9
|
Babiker MH, Chong B, Gonzalez LF, Cheema S, Frakes DH. Finite element modeling of embolic coil deployment: multifactor characterization of treatment effects on cerebral aneurysm hemodynamics. J Biomech 2013; 46:2809-16. [PMID: 24119679 DOI: 10.1016/j.jbiomech.2013.08.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 10/26/2022]
Abstract
Endovascular coiling is the most common treatment for cerebral aneurysms. During the treatment, a sequence of embolic coils with different stiffness, shapes, sizes, and lengths is deployed to fill the aneurysmal sac. Although coil packing density has been clinically correlated with treatment success, many studies have also reported success at low packing densities, as well as recurrence at high packing densities. Such reports indicate that other factors may influence treatment success. In this study, we used a novel finite element approach and computational fluid dynamics (CFD) to investigate the effects of packing density, coil shape, aneurysmal neck size, and parent vessel flow rate on aneurysmal hemodynamics. The study examines a testbed of 80 unique CFD simulations of post-treatment flows in idealized basilar tip aneurysm models. Simulated coil deployments were validated against in vitro and in vivo deployments. Among the investigated factors, packing density had the largest effect on intra-aneurysmal velocities. However, multifactor analysis of variance showed that coil shape can also have considerable effects, depending on packing density and neck size. Further, linear regression analysis showed an inverse relationship between mean void diameter in the aneurysm and mean intra-aneurysmal velocities, which underscores the importance of coil distribution and thus coil shape. Our study suggests that while packing density plays a key role in determining post-treatment hemodynamics, other factors such as coil shape, aneurysmal geometry, and parent vessel flow may also be very important.
Collapse
Affiliation(s)
- M Haithem Babiker
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler, ECG 334, P.O. Box 879709, Tempe, AZ 85287-9709, United States.
| | | | | | | | | |
Collapse
|
10
|
Morales HG, Larrabide I, Geers AJ, Aguilar ML, Frangi AF. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms. J Biomech 2013; 46:2158-64. [DOI: 10.1016/j.jbiomech.2013.06.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/18/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
|
11
|
Morales HG, Larrabide I, Geers AJ, San Román L, Blasco J, Macho JM, Frangi AF. A virtual coiling technique for image-based aneurysm models by dynamic path planning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:119-129. [PMID: 23008248 DOI: 10.1109/tmi.2012.2219626] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Computational algorithms modeling the insertion of endovascular devices, such as coil or stents, have gained an increasing interest in recent years. This scientific enthusiasm is due to the potential impact that these techniques have to support clinicians by understanding the intravascular hemodynamics and predicting treatment outcomes. In this work, a virtual coiling technique for treating image-based aneurysm models is proposed. A dynamic path planning was used to mimic the structure and distribution of coils inside aneurysm cavities, and to reach high packing densities, which is desirable by clinicians when treating with coils. Several tests were done to evaluate the performance on idealized and image-based aneurysm models. The proposed technique was validated using clinical information of real coiled aneurysms. The virtual coiling technique reproduces the macroscopic behavior of inserted coils and properly captures the densities, shapes and coil distributions inside aneurysm cavities. A practical application was performed by assessing the local hemodynamic after coiling using computational fluid dynamics (CFD). Wall shear stress and intra-aneurysmal velocities were reduced after coiling. Additionally, CFD simulations show that coils decrease the amount of contrast entering the aneurysm and increase its residence time.
Collapse
Affiliation(s)
- Hernán G Morales
- Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Information and Communications Technologies Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|