1
|
Analysis of generic coupling between EEG activity and P ETCO 2 in free breathing and breath-hold tasks using Maximal Information Coefficient (MIC). Sci Rep 2018. [PMID: 29540714 PMCID: PMC5851981 DOI: 10.1038/s41598-018-22573-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain activations related to the control of breathing are not completely known. The respiratory system is a non-linear system. However, the relationship between neural and respiratory dynamics is usually estimated through linear correlation measures, completely neglecting possible underlying nonlinear interactions. This study evaluate the linear and nonlinear coupling between electroencephalographic (EEG) signal and variations in carbon dioxide (CO2) signal related to different breathing task. During a free breathing and a voluntary breath hold tasks, the coupling between EEG power in nine different brain regions in delta (1–3 Hz) and alpha (8–13 Hz) bands and end-tidal CO2 (PET CO2) was evaluated. Specifically, the generic associations (i.e. linear and nonlinear correlations) and a “pure” nonlinear correlations were evaluated using the maximum information coefficient (MIC) and MIC-ρ2 between the two signals, respectively (where ρ2 represents the Pearson’s correlation coefficient). Our results show that in delta band, MIC indexes discriminate the two tasks in several regions, while in alpha band the same behaviour is observed for MIC-ρ2, suggesting a generic coupling between delta EEG power and PETCO2 and a pure nonlinear interaction between alpha EEG power and PETCO2. Moreover, higher indexes values were found for breath hold task respect to free breathing.
Collapse
|
2
|
Borrelli C, Aimo A, Mirizzi G, Passino C, Vergaro G, Emdin M, Giannoni A. How to take arms against central apneas in heart failure. Expert Rev Cardiovasc Ther 2017; 15:743-755. [PMID: 28777017 DOI: 10.1080/14779072.2017.1364626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Introduction Despite being a risk mediator in several observational studies, central apneas are currently orphan of treatment in heart failure. After the neutral effects on survival of two randomized controlled trials (RCTs) based on the use of positive airway pressure (the CANPAP and SERVE-HF trials), two alternative hypotheses have been formulated: 1) Periodic breathing/Cheyne-Stokes respiration (PB/CSR) in HF is protective. Indeed, the Naughton's hypothesis assumes that hyperventilation leads to increased cardiac output, lung volume, oxygen storage and reduced muscle sympathetic nerve activity, while central apnea to respiratory muscle rest and hypoxia-induced erythropoiesis. 2) The use of positive airway pressure is just a wrong treatment for PB/CSR. If this is the case, the search for novel potential alternative treatment approaches is mandatory in HF. Areas covered This review will focus on the crucial issue of whether PB/CSR should be treated or not in HF, first by outlining the ideal design of pathophysiological studies to test the Naughton's hypothesis and second by summarizing the treatment strategies so far proposed for PB/CSR in HF and identifying the most promising options to be tested in future RCTs. Expert commentary It is likely that PB/CSR may be compensatory in some cases, but after a certain threshold (to be defined) it becomes maladaptive with negative prognostic meaning in HF. The development of a pathophysiologically based treatment targeting feedback resetting and neurohormonal activation underlying PB/CSR is likely to be the best option to obtain survival benefits in HF.
Collapse
Affiliation(s)
- Chiara Borrelli
- a Cardiology and Cardiovascular Medicine Department , Fondazione Toscana Gabriele Monasterio , Pisa , Italy
| | - Alberto Aimo
- b Cardiology Division , University of Pisa , Pisa , Italy
| | - Gianluca Mirizzi
- a Cardiology and Cardiovascular Medicine Department , Fondazione Toscana Gabriele Monasterio , Pisa , Italy.,c Institute of Life Sciences , Scuola Superiore Sant'Anna , Pisa , Italy
| | - Claudio Passino
- a Cardiology and Cardiovascular Medicine Department , Fondazione Toscana Gabriele Monasterio , Pisa , Italy.,c Institute of Life Sciences , Scuola Superiore Sant'Anna , Pisa , Italy
| | - Giuseppe Vergaro
- a Cardiology and Cardiovascular Medicine Department , Fondazione Toscana Gabriele Monasterio , Pisa , Italy
| | - Michele Emdin
- a Cardiology and Cardiovascular Medicine Department , Fondazione Toscana Gabriele Monasterio , Pisa , Italy.,c Institute of Life Sciences , Scuola Superiore Sant'Anna , Pisa , Italy
| | - Alberto Giannoni
- a Cardiology and Cardiovascular Medicine Department , Fondazione Toscana Gabriele Monasterio , Pisa , Italy.,c Institute of Life Sciences , Scuola Superiore Sant'Anna , Pisa , Italy
| |
Collapse
|