1
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
2
|
Manning LK, Eager KLM, Willet CE, Slattery S, McNally JH, Spiers ZB, Hazelton M, Child G, Duggan R, O’Rourke BA, Tammen I. Myotonia Congenita in Australian Merino Sheep with a Missense Variant in CLCN1. Animals (Basel) 2024; 14:3703. [PMID: 39765607 PMCID: PMC11672719 DOI: 10.3390/ani14243703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Myotonia congenita is a hereditary, non-dystrophic skeletal muscle disorder associated with muscle stiffness due to delayed muscle relaxation after contraction. We review myotonia congenita in domesticated animals and humans and investigated suspected myotonia congenita in a flock of Merino sheep in Australia. In 2020, a property in New South Wales reported a four-year history of lambs that would fall on disturbance before rapidly recovering, with 13 affected sheep identified in 2020. Episodes were associated with a short period of tetanic spasms and a stiff gait upon rising. Lambs were otherwise normal between episodes, although over time, lost body condition and occasionally died from misadventure. An inherited condition was considered from limited pedigree information and a preliminary diagnosis of myotonia congenita was made based on clinical presentation. Biochemistry from four sheep found variable, but typically mild increases in creatine kinase (CK) and aspartate aminotransferase (AST). Modified electromyography on six affected sheep found irregular electrical activity within the muscle. For four sheep, there were no consistent significant abnormalities on post mortem examination and histopathology-typical for this condition. A review of the Online Mendelian Inheritance in Man (OMIM) and Online Mendelian Inheritance in Animals (OMIA) databases was conducted to summarise information about myotonia congenita in humans and eight non-human species of animals. Comparing the characteristic clinical presentation, pathology and electromyography data of affected Merino sheep to similar conditions in other species assisted the identification of likely candidate genes. Whole genome sequencing of two affected lambs detected a missense variant in CLCN1 (NC_056057.1:g.107930611C>T; XM_004008136.5:c.844C>T; XP_004008185.4:p.(P282S)), with a predicted deleterious effect on protein function. An SNP genotyping assay was developed, and the variant segregated with the disease in 12 affected sheep and obligate carrier rams under an assumed recessive mode of inheritance. Identifying a likely causal variant and developing a diagnostic test allows screening of suspected affected or carrier Merino sheep for early intervention to reduce propagation of the variant within flocks.
Collapse
Affiliation(s)
- Leah K. Manning
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
- Elizabeth Macarthur Agricultural Institute, Department of Primary Industries and Regional Development, Woodbridge Road, Menangle, NSW 2568, Australia
| | - Katie L. M. Eager
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
- Elizabeth Macarthur Agricultural Institute, Department of Primary Industries and Regional Development, Woodbridge Road, Menangle, NSW 2568, Australia
| | - Cali E. Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Shaun Slattery
- North West Local Land Services, Narrabri, NSW 2390, Australia
| | | | - Zoe B. Spiers
- Elizabeth Macarthur Agricultural Institute, Department of Primary Industries and Regional Development, Woodbridge Road, Menangle, NSW 2568, Australia
| | - Mark Hazelton
- Elizabeth Macarthur Agricultural Institute, Department of Primary Industries and Regional Development, Woodbridge Road, Menangle, NSW 2568, Australia
| | - Georgina Child
- Small Animal Specialist Hospital, North Ryde, NSW 2113, Australia
| | - Rick Duggan
- North West Local Land Services, Narrabri, NSW 2390, Australia
| | - Brendon A. O’Rourke
- Elizabeth Macarthur Agricultural Institute, Department of Primary Industries and Regional Development, Woodbridge Road, Menangle, NSW 2568, Australia
| | - Imke Tammen
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
3
|
Nelson TS, Duran P, Calderon-Rivera A, Gomez K, Loya-Lopez S, Khanna R. Mouse models of non-dystrophic and dystrophic myotonia exhibit nociplastic pain-like behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599732. [PMID: 38948724 PMCID: PMC11212949 DOI: 10.1101/2024.06.19.599732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Pain is a prominent and debilitating symptom in myotonic disorders, yet its physiological mechanisms remain poorly understood. This study assessed preclinical pain-like behavior in murine models of pharmacologically induced myotonia and myotonic dystrophy type 1 (DM1). In both myotonia congenita and DM1, impairment of the CLCN1 gene, which encodes skeletal muscle voltage-gated CLC-1 chloride channels, reduces chloride ion conductance in skeletal muscle cells, leading to prolonged muscle excitability and delayed relaxation after contraction. We used the CLC-1 antagonist anthracene-9-carboxylic acid (9-AC) at intraperitoneal doses of 30 or 60 mg/kg and HSA LR20b DM1 mice to model CLC-1-induced myotonia. Our experimental approach included in vivo pain behavioral testing, ex vivo calcium imaging, and whole-cell current-clamp electrophysiology in mouse dorsal root ganglion (DRG) neurons. A single injection of 9-AC induced myotonia in mice, which persisted for several hours and resulted in long-lasting allodynic pain-like behavior. Similarly, HSA LR20b mice exhibited both allodynia and hyperalgesia. Despite these pain-like behaviors, DRG neurons did not show signs of hyperexcitability in either myotonic model. These findings suggest that myotonia induces nociplastic pain-like behavior in preclinical rodents, likely through central sensitization mechanisms rather than peripheral sensitization. This study provides insights into the pathophysiology of pain in myotonic disorders and highlights the potential of using myotonic mouse models to explore pain mechanisms and assess novel analgesics. Future research should focus on the central mechanisms involved in myotonia-induced pain and develop targeted therapies to alleviate this significant clinical burden.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department of Pharmacology and Therapeutics, McKnight Brain Institute, and Pain and Addiction Therapeutics (PATH) Collaboratory, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Aida Calderon-Rivera
- Department of Pharmacology and Therapeutics, McKnight Brain Institute, and Pain and Addiction Therapeutics (PATH) Collaboratory, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kimberly Gomez
- Department of Pharmacology and Therapeutics, McKnight Brain Institute, and Pain and Addiction Therapeutics (PATH) Collaboratory, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Santiago Loya-Lopez
- Department of Pharmacology and Therapeutics, McKnight Brain Institute, and Pain and Addiction Therapeutics (PATH) Collaboratory, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, McKnight Brain Institute, and Pain and Addiction Therapeutics (PATH) Collaboratory, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Doughty CT, Schaefer PW, Brizzi K, Linnoila JJ. Case 14-2024: A 30-Year-Old Woman with Back Pain, Leg Stiffness, and Falls. N Engl J Med 2024; 390:1712-1719. [PMID: 38718362 DOI: 10.1056/nejmcpc2312733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Affiliation(s)
- Christopher T Doughty
- From the Department of Neurology, Brigham and Women's Hospital (C.T.D.), the Departments of Radiology (P.W.S.), Medicine (K.B.), and Neurology (K.B., J.J.L.), Massachusetts General Hospital, and the Departments of Neurology (C.T.D., K.B., J.J.L.), Radiology (P.W.S.), and Medicine (K.B., J.J.L.), Harvard Medical School - all in Boston
| | - Pamela W Schaefer
- From the Department of Neurology, Brigham and Women's Hospital (C.T.D.), the Departments of Radiology (P.W.S.), Medicine (K.B.), and Neurology (K.B., J.J.L.), Massachusetts General Hospital, and the Departments of Neurology (C.T.D., K.B., J.J.L.), Radiology (P.W.S.), and Medicine (K.B., J.J.L.), Harvard Medical School - all in Boston
| | - Kate Brizzi
- From the Department of Neurology, Brigham and Women's Hospital (C.T.D.), the Departments of Radiology (P.W.S.), Medicine (K.B.), and Neurology (K.B., J.J.L.), Massachusetts General Hospital, and the Departments of Neurology (C.T.D., K.B., J.J.L.), Radiology (P.W.S.), and Medicine (K.B., J.J.L.), Harvard Medical School - all in Boston
| | - Jenny J Linnoila
- From the Department of Neurology, Brigham and Women's Hospital (C.T.D.), the Departments of Radiology (P.W.S.), Medicine (K.B.), and Neurology (K.B., J.J.L.), Massachusetts General Hospital, and the Departments of Neurology (C.T.D., K.B., J.J.L.), Radiology (P.W.S.), and Medicine (K.B., J.J.L.), Harvard Medical School - all in Boston
| |
Collapse
|
5
|
Onore ME, Picillo E, D’Ambrosio P, Morra S, Nigro V, Politano L. Phenotypic Variability of Andersen-Tawil Syndrome Due to Allelic Mutation c.652C>T in the KCNJ2 Gene-A New Family Case Report. Biomolecules 2024; 14:507. [PMID: 38672523 PMCID: PMC11048520 DOI: 10.3390/biom14040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Andersen-Tawil syndrome (ATS) is a multisystem channelopathy characterized by periodic paralysis, ventricular arrhythmias, prolonged QT interval, and facial dysmorphisms occurring in the first/second decade of life. High phenotypic variability and incomplete penetrance of the genes causing the disease make its diagnosis still a challenge. We describe a three-generation family with six living individuals affected by ATS. The proband is a 37-year-old woman presenting since age 16, with episodes of muscle weakness and cramps in the pre-menstrual period. The father, two brothers, one paternal uncle and one cousin also complained of cramps, muscle stiffness, and weakness. Despite normal serum potassium concentration, treatment with potassium, magnesium, and acetazolamide alleviated paralysis attacks suggesting a dyskalemic syndrome. Dysmorphic features were noted in the proband, only later. On the ECG, all but one had normal QT intervals. The affected males developed metabolic syndrome or obesity. The father had two myocardial infarctions and was implanted with an intracardiac cardioverter defibrillator (ICD). A genetic investigation by WES analysis detected the heterozygous pathogenic variant (NM_000891.2: c.652C>T, p. Arg218Trp) in the KCNJ2 gene related to ATS, confirmed by segregation studies in all affected members. Furthermore, we performed a review of cases with the same mutation in the literature, looking for similarities and divergences with our family case.
Collapse
Affiliation(s)
- Maria Elena Onore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (E.P.); (S.M.); (V.N.)
| | - Esther Picillo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (E.P.); (S.M.); (V.N.)
| | - Paola D’Ambrosio
- Cardiomyology and Medical Genetics Unit, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy;
| | - Salvatore Morra
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (E.P.); (S.M.); (V.N.)
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (E.P.); (S.M.); (V.N.)
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics Unit, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy;
| |
Collapse
|
6
|
Campanale C, Laghetti P, Saltarella I, Altamura C, Canioni E, Iosa E, Maggi L, Brugnoni R, Tacconi P, Desaphy JF. A c.1775C > T Point Mutation of Sodium Channel Alfa Subunit Gene (SCN4A) in a Three-Generation Sardinian Family with Sodium Channel Myotonia. J Neuromuscul Dis 2024; 11:725-734. [PMID: 38427496 DOI: 10.3233/jnd-230134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. Methods Next-generation sequencing including the CLCN1 and SCN4A genes was performed in patients with clinical neuromuscular disorders. Electromyography, Short Exercise Test, in vivo and in vitro electrophysiology, site-directed mutagenesis and heterologous expression were collected. Results A heterozygous point mutation (c.1775C > T, p.Thr592Ile) of muscle voltage-gated sodium channel α subunit gene (SCN4A) has been identified in five female patients over three generations, in a family with non-dystrophic myotonia. The muscle stiffness and myotonia involve mainly the face and hands, but also affect walking and running, appearing early after birth and presenting a clear cold sensitivity. Very hot temperatures, menstruation and pregnancy also exacerbate the symptoms; muscle pain and a warm-up phenomenon are variable features. Neither paralytic attacks nor post-exercise weakness has been reported. Muscle hypertrophy with cramp-like pain and increased stiffness developed during pregnancy. The symptoms were controlled with both mexiletine and acetazolamide. The Short Exercise Test after muscle cooling revealed two different patterns, with moderate absolute changes of compound muscle action potential amplitude. Conclusions The p.Thr592Ile mutation in the SCN4A gene identified in this Sardinian family was responsible of clinical phenotype of myotonia.
Collapse
Affiliation(s)
- Carmen Campanale
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Paola Laghetti
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Saltarella
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Altamura
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Canioni
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuele Iosa
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Maggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaella Brugnoni
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Tacconi
- Centro Regionale per la Sclerosi Multipla, Ospedale Binaghi, Cagliari, Italy
| | - Jean-François Desaphy
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Matthews E, Palace J, Ramdas S, Sansone V, Tristani-Firouzi M, Vicart S, Willis T. Care Recommendations for the Investigation and Management of Children With Skeletal Muscle Channelopathies. Pediatr Neurol 2023; 145:102-111. [PMID: 37315339 DOI: 10.1016/j.pediatrneurol.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023]
Abstract
The field of pediatric skeletal muscle channelopathies has seen major new advances in terms of a wider understanding of clinical presentations and new phenotypes. Skeletal muscle channelopathies cause significant disability and even death in some of the newly described phenotypes. Despite this, there are virtually no data on the epidemiology and longitudinal natural history of these conditions or randomized controlled trial evidence of efficacy or tolerability of any treatment in children, and thus best practice care recommendations do not exist. Clinical history, and to a lesser extent examination, is key to eliciting symptoms and signs that indicate a differential diagnosis of muscle channelopathy. Normal routine investigations should not deter one from the diagnosis. Specialist neurophysiologic investigations have an additional role, but their availability should not delay genetic testing. New phenotypes are increasingly likely to be identified by next-generation sequencing panels. Many treatments or interventions for symptomatic patients are available, with anecdotal data to support their benefit, but we lack trial data on efficacy, safety, or superiority. This lack of trial data in turn can lead to hesitancy in prescribing among doctors or in accepting medication by parents. Holistic management addressing work, education, activity, and additional symptoms of pain and fatigue provides significant benefit. Preventable morbidity and sometimes mortality occurs if the diagnosis and therefore treatment is delayed. Advances in genetic sequencing technology and greater access to testing may help to refine recently identified phenotypes, including histology, as more cases are described. Randomized controlled treatment trials are required to inform best practice care recommendations. A holistic approach to management is essential and should not be overlooked. Good quality data on prevalence, health burden, and optimal treatment are urgently needed.
Collapse
Affiliation(s)
- Emma Matthews
- Department of Neurology, Atkinson-Morley Neuromuscular Centre, St George's University Hospitals NHS Foundation Trust, and Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| | - Jacqueline Palace
- Clinical Neurology, John Radcliffe Hospital, Oxford University Foundation Trust, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sithara Ramdas
- Department of Paediatrics, MDUK Neuromuscular Centre, University of Oxford, Oxford, UK; Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Valeria Sansone
- Neurorehabilitation Unit, Neuromuscular Omnicentre Clinical Center, Niguarda Hospital, University of Milan, Milan, Italy
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute and the Division of Paediatric Cardiology, University of Utah, Salt Lake City, Utah
| | - Savine Vicart
- Reference Centre for Neuromuscular Disorders, APHP, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Tracey Willis
- Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, England
| |
Collapse
|
8
|
Mohammed SR, Gafoor S, Panday A. Acute myotonic reaction during succinylcholine anaesthesia. Pract Neurol 2023; 23:74-77. [PMID: 36192135 DOI: 10.1136/pn-2022-003352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 02/02/2023]
Abstract
A 21-year-old woman developed an acute myotonic reaction while undergoing anaesthesia using succinylcholine. Examination later showed she had shoulder, neck and calf hypertrophy, bilateral symmetrical ptosis and eyelid, handgrip and percussion myotonia. Peripheral neurophysiology studies identified significant, continuous myotonic discharges in both upper and lower limbs. Genetic analysis identified a c.3917G>A (p.Gly1306Glu) mutation in the SCN4A gene, confirming a diagnosis of sodium channel myotonia. Succinylcholine and other depolarising agents can precipitate life-threatening acute myotonic reactions when given to patients with myotonia. Patients with neuromuscular disorders are at an increased risk of perioperative anaesthetic complications. We report a woman who developed an acute myotonic reaction whilst undergoing anaesthesia, in the context of an unrecognised myotonic disorder. We then discuss an approach to the diagnosis of myotonic disorders.
Collapse
Affiliation(s)
- Saeed Rashaad Mohammed
- Department of Clinical Medical Sciences, The University of the West Indies at St Augustine Faculty of Medical Sciences, St Augustine, Trinidad and Tobago
| | - Stefan Gafoor
- Department of Medicine, Eric Williams Medical Sciences Complex Compound, Champ Fleurs, Trinidad and Tobago
| | - Avidesh Panday
- Department of Clinical Medical Sciences, The University of the West Indies at St Augustine Faculty of Medical Sciences, St Augustine, Trinidad and Tobago
| |
Collapse
|
9
|
Ke Q, Zhao Y, Li Y, Ye J, Tang S, He F, Ji F, Dai X, Ni J, Li Y, Griggs RC, Cheng X. Clinical comparison and functional study of the L703P: a recurrent mutation in human SCN4A that causes sodium channel myotonia. Neuromuscul Disord 2022; 32:811-819. [PMID: 36050252 DOI: 10.1016/j.nmd.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
The non-dystrophic myotonias are inherited skeletal muscle disorders characterized by skeletal muscle stiffness after voluntary contraction, without muscle atrophy. Based on their clinical features, non-dystrophic myotonias are classified into myotonia congenita, paramyotonia congenita, and sodium channel myotonia. Using whole-exome next-generation sequencing, we identified a L703P mutation (c.2108T>C, p.L703P) in SCN4A in a Chinese family diagnosed with non-dystrophic myotonias. The clinical findings of patients in this family included muscle stiffness and hypertrophy. The biophysical properties of wildtype and mutant channels were investigated using whole-cell patch clamp. L703P causes both gain-of-function and loss-of-function changes in Nav1.4 properties, including decreased current density, impaired recovery, enhanced activation and slow inactivation. Our study demonstrates that L703P is a pathogenic variant for myotonia, and provides additional electrophysiological information for understanding the pathogenic mechanism of SCN4A-associated channelopathies.
Collapse
Affiliation(s)
- Qing Ke
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine. #79 Qingchun Road, Hangzhou, Zhejiang 310003, P.R. China.
| | - Youcheng Zhao
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, P.R. China
| | - Yuezhou Li
- The Children's hospital, Zhejiang university school of medicine, P.R. China
| | - Jia Ye
- The Children's hospital, Zhejiang university school of medicine, P.R. China
| | - Siyang Tang
- The Children's hospital, Zhejiang university school of medicine, P.R. China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine. #79 Qingchun Road, Hangzhou, Zhejiang 310003, P.R. China
| | - Fang Ji
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine. #79 Qingchun Road, Hangzhou, Zhejiang 310003, P.R. China
| | - Xuejiao Dai
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine. #79 Qingchun Road, Hangzhou, Zhejiang 310003, P.R. China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine. #79 Qingchun Road, Hangzhou, Zhejiang 310003, P.R. China
| | - Yi Li
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine. #79 Qingchun Road, Hangzhou, Zhejiang 310003, P.R. China
| | - Robert C Griggs
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| | - Xiaoyang Cheng
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, US; Center for Neuroscience & Regeneration Research, Yale University, New Haven, Connecticut 06510, US; Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, Connecticut 06516, US.
| |
Collapse
|
10
|
Rabenstein M, Abicht A, Brunn A, Lehmann H, Wunderlich G. Persistent hypokalaemia and intermittent muscle weakness. Pract Neurol 2022; 22:518-520. [PMID: 35907633 DOI: 10.1136/pn-2022-003433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
Abstract
A man in his 20s gave a 9-year history of recurrent muscle pain and weakness, occurring mostly after exercise, and lasting for up to 2 days. There had been one episode of severe rhabdomyolysis after cold exposure. He also had longstanding hypokalaemia, which was key to his correct diagnosis but was not followed. This case highlights the importance of an appropriately methodical investigation of weak hypokalaemic patients, and the relevance of hypokalaemia as a cause of neuromuscular symptoms not related to muscular channelopathies.
Collapse
Affiliation(s)
- Monika Rabenstein
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Angela Abicht
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany.,Medical Genetics Centre, Munich, Germany
| | - Anna Brunn
- Department of Neuropathology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Helmar Lehmann
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,Center for Rare Diseases, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Picci G, Marchesan S, Caltagirone C. Ion Channels and Transporters as Therapeutic Agents: From Biomolecules to Supramolecular Medicinal Chemistry. Biomedicines 2022; 10:biomedicines10040885. [PMID: 35453638 PMCID: PMC9032600 DOI: 10.3390/biomedicines10040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Ion channels and transporters typically consist of biomolecules that play key roles in a large variety of physiological and pathological processes. Traditional therapies include many ion-channel blockers, and some activators, although the exact biochemical pathways and mechanisms that regulate ion homeostasis are yet to be fully elucidated. An emerging area of research with great innovative potential in biomedicine pertains the design and development of synthetic ion channels and transporters, which may provide unexplored therapeutic opportunities. However, most studies in this challenging and multidisciplinary area are still at a fundamental level. In this review, we discuss the progress that has been made over the last five years on ion channels and transporters, touching upon biomolecules and synthetic supramolecules that are relevant to biological use. We conclude with the identification of therapeutic opportunities for future exploration.
Collapse
Affiliation(s)
- Giacomo Picci
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.M.); (C.C.)
| | - Claudia Caltagirone
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
- Correspondence: (S.M.); (C.C.)
| |
Collapse
|
12
|
Milani G, Cavalluzzi MM, Altamura C, Santoro A, Perrone M, Muraglia M, Colabufo NA, Corbo F, Casalino E, Franchini C, Pisano I, Desaphy J, Carrieri A, Carocci A, Lentini G. Bioisosteric Modification of To042: Synthesis and Evaluation of Promising Use-Dependent Inhibitors of Voltage-Gated Sodium Channels. ChemMedChem 2021; 16:3588-3599. [PMID: 34519427 PMCID: PMC9293070 DOI: 10.1002/cmdc.202100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Indexed: 11/07/2022]
Abstract
Three analogues of To042, a tocainide-related lead compound recently reported for the treatment of myotonia, were synthesized and evaluated in vitro as skeletal muscle sodium channel blockers possibly endowed with enhanced use-dependent behavior. Patch-clamp experiments on hNav1.4 expressed in HEK293 cells showed that N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine, the aryloxyalkyl bioisostere of To042, exerted a higher use-dependent block than To042 thus being able to preferentially block the channels in over-excited membranes while preserving healthy tissue function. It also showed the lowest active transport across BBB according to the results of P-glycoprotein (P-gp) interacting activity evaluation and the highest cytoprotective effect on HeLa cells. Quantum mechanical calculations and dockings gave insights on the most probable conformation of the aryloxyalkyl bioisostere of To042 in solution and the target residues involved in the binding, respectively. Both approaches indicated the conformations that might be adopted in both the unbound and bound state of the ligand. Overall, N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine exhibits an interesting toxico-pharmacological profile and deserves further investigation.
Collapse
Affiliation(s)
- Gualtiero Milani
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Concetta Altamura
- Department of Biomedical Sciences and Human OncologySchool of MedicineUniversity of Bari Aldo Moro PoliclinicoPiazza Giulio Cesare70124BariItaly
| | - Antonella Santoro
- Department of Bioscience, Biotechnology and BiopharmaceuticsUniversity of Bari Aldo MoroVia Orabona 470125BariItaly
| | - Mariagrazia Perrone
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Marilena Muraglia
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Nicola Antonio Colabufo
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Filomena Corbo
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Elisabetta Casalino
- Department of Veterinary MedicineUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Carlo Franchini
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Isabella Pisano
- Department of Bioscience, Biotechnology and BiopharmaceuticsUniversity of Bari Aldo MoroVia Orabona 470125BariItaly
| | - Jean‐François Desaphy
- Department of Biomedical Sciences and Human OncologySchool of MedicineUniversity of Bari Aldo Moro PoliclinicoPiazza Giulio Cesare70124BariItaly
| | - Antonio Carrieri
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Alessia Carocci
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| | - Giovanni Lentini
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari Aldo MoroVia E. Orabona 470125BariItaly
| |
Collapse
|