1
|
Hu Y, Huang J, Wang S, Sun X, Wang X, Yu H. Deciphering Autoimmune Diseases: Unveiling the Diagnostic, Therapeutic, and Prognostic Potential of Immune Repertoire Sequencing. Inflammation 2025; 48:676-695. [PMID: 38914737 DOI: 10.1007/s10753-024-02079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024]
Abstract
Autoimmune diseases (AIDs) are immune system disorders where the body exhibits an immune response to its own antigens, causing damage to its own tissues and organs. The pathogenesis of AIDs is incompletely understood. However, recent advances in immune repertoire sequencing (IR-seq) technology have opened-up a new avenue to study the IR. These studies have revealed the prevalence in IR alterations, potentially inducing AIDs by disrupting immune tolerance and thereby contributing to our comprehension of AIDs. IR-seq harbors significant potential for the clinical diagnosis, personalized treatment, and prognosis of AIDs. This article reviews the application and progress of IR-seq in diseases, such as multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes, to enhance our understanding of the pathogenesis of AIDs and offer valuable references for the diagnosis and treatment of AIDs.
Collapse
Affiliation(s)
- Yuelin Hu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jialing Huang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Shuqing Wang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
| |
Collapse
|
2
|
Shuoshan X, Changjuan X, Honglin Z, Qinghua Z, Shaxi O, Qi W, Lihua Z. Genetic variants related to systemic lupus erythematosus revealed using bioinformatics. EUR J INFLAMM 2022. [DOI: 10.1177/20587392211070407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and is characterized by immune inflammation. The pathogenesis of SLE is complex and involves genetic and environmental components. Methods In this study, single nucleotide polymorphisms (SNPs) closely related to SLE were searched through integration analysis of public gene expression profiles from Gene Expression Omnibus and European Bioinformatics Institute data, and immunochip data in a genome-wide association study. Results SLE-associated SNPs were identified in 17 genes common among datasets. The mRNA expression levels of three genes among them were verified to differ between SLE patients and healthy controls subjects based on real-time polymerase chain reaction and sequencing of peripheral blood mononuclear cells (PBMCs). The GG genotype frequency of rs116253043 in LY6G6D was significantly lower in SLE patients and the GC genotype frequency of rs328 on LPL was significantly higher in SLE patients than in controls. VARS2 levels were significantly higher in SLE PBMCs than controls, but there was no significant difference in allele or genotype frequencies of the two SNPs (rs115470445 [C/T] and rs114394807 [A/G]) between groups. Conclusion Our results suggest that the GG genotype of rs116253043 plays a protective role against SLE, whereas the C allele of rs328 is a risk factor for SLE and rs116253043 with the GC genotype is an SLE-susceptibility SNP.
Collapse
Affiliation(s)
- Xie Shuoshan
- Department of Rheumatology & Nephrology, Department and Laboratory of Kidney Disease, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, PR China
- Changsha Clinical Research Center for Kidney Disease, Changsha, PR China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, PR China
| | - Xiao Changjuan
- Department of Rheumatology & Nephrology, Department and Laboratory of Kidney Disease, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, PR China
- Changsha Clinical Research Center for Kidney Disease, Changsha, PR China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, PR China
| | - Zhu Honglin
- Rheumatology Department, Xiangya Hospital, Central South University, Changsha, China
| | - Zeng Qinghua
- Department of Rheumatology & Nephrology, Department and Laboratory of Kidney Disease, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, PR China
- Changsha Clinical Research Center for Kidney Disease, Changsha, PR China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, PR China
| | - Ouyang Shaxi
- Department of Rheumatology & Nephrology, Department and Laboratory of Kidney Disease, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, PR China
- Changsha Clinical Research Center for Kidney Disease, Changsha, PR China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, PR China
| | - Wang Qi
- Department of Radiology, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhang Lihua
- Department of Rheumatology, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Wajda A, Sivitskaya L, Paradowska-Gorycka A. Application of NGS Technology in Understanding the Pathology of Autoimmune Diseases. J Clin Med 2021; 10:3334. [PMID: 34362117 PMCID: PMC8348854 DOI: 10.3390/jcm10153334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
NGS technologies have transformed clinical diagnostics and broadly used from neonatal emergencies to adult conditions where the diagnosis cannot be made based on clinical symptoms. Autoimmune diseases reveal complicate molecular background and traditional methods could not fully capture them. Certainly, NGS technologies meet the needs of modern exploratory research, diagnostic and pharmacotherapy. Therefore, the main purpose of this review was to briefly present the application of NGS technology used in recent years in the understanding of autoimmune diseases paying particular attention to autoimmune connective tissue diseases. The main issues are presented in four parts: (a) panels, whole-genome and -exome sequencing (WGS and WES) in diagnostic, (b) Human leukocyte antigens (HLA) as a diagnostic tool, (c) RNAseq, (d) microRNA and (f) microbiome. Although all these areas of research are extensive, it seems that epigenetic impact on the development of systemic autoimmune diseases will set trends for future studies on this area.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Larysa Sivitskaya
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|