2
|
Ferreira MY, Mitre LP, Bishay AE, Batista S, Palavani LB, Oliveira LB, Semione G, Andreão FF, Porto Junior S, Sousa MP, Borges PGLB, Camerotte R, Bertani R, Lawton MT, Figueiredo EG. Enhancing the quality of evidence, comparability, and reproducibility in brain arteriovenous malformations treated with open surgery research: a systematic review and proposal of a reporting guideline for surgical and clinical outcomes. Neurosurg Rev 2024; 47:174. [PMID: 38643293 DOI: 10.1007/s10143-024-02422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Brain Arteriovenous Malformations (bAVMs) are rare but high-risk developmental anomalies of the vascular system. Microsurgery through craniotomy is believed to be the mainstay standard treatment for many grades of bAVMs. However, a significant challenge emerges in the existing body of clinical studies on open surgery for bAVMs: the lack of reproducibility and comparability. This study aims to assess the quality of studies reporting clinical and surgical outcomes for bAVMs treated by open surgery and develop a reporting guideline checklist focusing on essential elements to ensure comparability and reproducibility. This is a systematic literature review that followed the PRISMA guidelines with the search in Medline, Embase, and Web of Science databases, for studies published between January 1, 2018, and December 1, 2023. Included studies were scrutinized focusing on seven domains: (1) Assessment of How Studies Reported on the Baseline Characteristics of the Patient Sample; (2) Assessment and reporting on bAVMs grading, anatomical characteristics, and radiological aspects; (3) Angioarchitecture Assessment and Reporting; (4) Reporting on Pivotal Concepts Definitions; (5) Reporting on Neurosurgeon(s) and Staff Characteristics; (6) Reporting on Surgical Details; (7) Assessing and Reporting Clinical and Surgical Outcomes and AEs. A total of 47 studies comprising 5,884 patients were included. The scrutiny of the studies identified that the current literature in bAVM open surgery is deficient in many aspects, ranging from fundamental pieces of information of methodology to baseline characteristics of included patients and data reporting. Included studies demonstrated a lack of reproducibility that hinders building cumulative evidence. A bAVM Open Surgery Reporting Guideline with 65 items distributed across eight domains was developed and is proposed in this study aiming to address these shortcomings. This systematic review identified that the available literature regarding microsurgery for bAVM treatment, particularly in studies reporting clinical and surgical outcomes, lacks rigorous scientific methodology and quality in reporting. The proposed bAVM Open Surgery Reporting Guideline covers all essential aspects and is a potential solution to address these shortcomings and increase transparency, comparability, and reproducibility in this scenario. This proposal aims to advance the level of evidence and enhance knowledge regarding the Open Surgery treatment for bAVMs.
Collapse
Affiliation(s)
| | - Lucas P Mitre
- Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP, Brazil
| | | | - Sávio Batista
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucca B Palavani
- Faculty of Medicine, Max Planck University Center, Indaiatuba, SP, Brazil
| | - Leonardo B Oliveira
- School of Medicine, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | | | - Filipi F Andreão
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Marcelo P Sousa
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pedro G L B Borges
- Technical-Educational Foundation Souza Marques, Rio de Janeiro, RJ, Brazil
| | - Raphael Camerotte
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raphael Bertani
- Department of Neurosurgery, University of São Paulo, São Paulo, SP, Brazil
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurologic Institute, St. Joseph's Medical Center, Phoenix, AZ, USA
| | | |
Collapse
|
3
|
Jiao Y, Zhang J, Yang X, Zhan T, Wu Z, Li Y, Zhao S, Li H, Weng J, Huo R, Wang J, Xu H, Sun Y, Wang S, Cao Y. Artificial Intelligence-Assisted Evaluation of the Spatial Relationship between Brain Arteriovenous Malformations and the Corticospinal Tract to Predict Postsurgical Motor Defects. AJNR Am J Neuroradiol 2023; 44:17-25. [PMID: 36549849 PMCID: PMC9835926 DOI: 10.3174/ajnr.a7735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Preoperative evaluation of brain AVMs is crucial for the selection of surgical candidates. Our goal was to use artificial intelligence to predict postsurgical motor defects in patients with brain AVMs involving motor-related areas. MATERIALS AND METHODS Eighty-three patients who underwent microsurgical resection of brain AVMs involving motor-related areas were retrospectively reviewed. Four artificial intelligence-based indicators were calculated with artificial intelligence on TOF-MRA and DTI, including FN5mm/50mm (the proportion of fiber numbers within 5-50mm from the lesion border), FN10mm/50mm (the same but within 10-50mm), FP5mm/50mm (the proportion of fiber voxel points within 5-50mm from the lesion border), and FP10mm/50mm (the same but within 10-50mm). The association between the variables and long-term postsurgical motor defects was analyzed using univariate and multivariate analyses. Least absolute shrinkage and selection operator regression with the Pearson correlation coefficient was used to select the optimal features to develop the machine learning model to predict postsurgical motor defects. The area under the curve was calculated to evaluate the predictive performance. RESULTS In patients with and without postsurgical motor defects, the mean FN5mm/50mm, FN10mm/50mm, FP5mm/50mm, and FP10mm/50mm were 0.24 (SD, 0.24) and 0.03 (SD, 0.06), 0.37 (SD, 0.27) and 0.06 (SD, 0.08), 0.06 (SD, 0.10) and 0.01 (SD, 0.02), and 0.10 (SD, 0.12) and 0.02 (SD, 0.05), respectively. Univariate and multivariate logistic analyses identified FN10mm/50mm as an independent risk factor for long-term postsurgical motor defects (P = .002). FN10mm/50mm achieved a mean area under the curve of 0.86 (SD, 0.08). The mean area under the curve of the machine learning model consisting of FN10mm/50mm, diffuseness, and the Spetzler-Martin score was 0.88 (SD, 0.07). CONCLUSIONS The artificial intelligence-based indicator, FN10mm/50mm, can reflect the lesion-fiber spatial relationship and act as a dominant predictor for postsurgical motor defects in patients with brain AVMs involving motor-related areas.
Collapse
Affiliation(s)
- Y Jiao
- From the Department of Neurosurgery (Y.J., J.Z., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - J Zhang
- From the Department of Neurosurgery (Y.J., J.Z., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - X Yang
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - T Zhan
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - Z Wu
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - Y Li
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - S Zhao
- From the Department of Neurosurgery (Y.J., J.Z., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - H Li
- From the Department of Neurosurgery (Y.J., J.Z., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - J Weng
- From the Department of Neurosurgery (Y.J., J.Z., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - R Huo
- From the Department of Neurosurgery (Y.J., J.Z., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - J Wang
- From the Department of Neurosurgery (Y.J., J.Z., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - H Xu
- From the Department of Neurosurgery (Y.J., J.Z., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - Y Sun
- From the Department of Neurosurgery (Y.J., J.Z., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - S Wang
- From the Department of Neurosurgery (Y.J., J.Z., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| | - Y Cao
- From the Department of Neurosurgery (Y.J., J.Z., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (Y.J., J.Z., X.Y., T.Z., Z.W., Y.L., S.Z., H.L., J. Weng, R.H., J. Wang, H.X., Y.S., S.W., Y.C.), Beijing, China
| |
Collapse
|