1
|
Bonová P, Končeková J, Némethová M, Morávek M, Baráth P, Danchenko M, Bona M. Remote ischemic conditioning-induced shift from a vulnerable to a tolerant penumbra: A proteomic perspective. Exp Neurol 2025; 391:115307. [PMID: 40381903 DOI: 10.1016/j.expneurol.2025.115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/25/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
The concept of the ischaemic penumbra - stroke tissue with the potential to survive - has opened the door to a wide range of experimental strategies that could benefit the recovery of patients after a stroke. In this study, we used proteomic analysis to examine how remote ischaemic postconditioning (RIPC) mediates a shift from a vulnerable to a tolerant penumbra. We identified 450 differentially abundant proteins between the control group and the groups subjected to ischaemia via middle cerebral artery occlusion with or without RIPC during infarct expansion. The majority of proteins were downregulated following RIPC. Based on Gene Ontology enrichment analysis, we uncovered 24 gene sets significantly influenced during the reprogramming from a vulnerable to a tolerant penumbra. RIPC treatment positively impacted the synthesis of proteins enriched in the cytosol (GO:0005829) but inhibited the abundance of proteins belonging to the cytoskeleton (GO:0005874 microtubule) and the glutamatergic synapse (GO:0098978). The shift to a tolerant phenotype involved overexpression of aminopeptidases (GO:0004177) related to proteolysis (GO:0006508). RIPC also downregulated proteins involved in the tricarboxylic acid cycle (GO:0006099), adenosine triphosphate (ATP) binding (GO:0005524), and ATP hydrolysis (GO:0016887). We validated our proteomic findings by selecting two candidate genes (Map2 and Tubb3) for immunofluorescence. We identified the low-molecular-weight Map2 isoform as a potential marker of the shift from a vulnerable to a tolerant penumbra. In summary, our findings have revealed novel avenues for multimodal investigation of reprogramming the penumbra as part of recovery from stroke.
Collapse
Affiliation(s)
- Petra Bonová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Košice, Slovak Republic.
| | - Jana Končeková
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Košice, Slovak Republic
| | - Miroslava Némethová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Košice, Slovak Republic
| | - Marko Morávek
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Košice, Slovak Republic
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38 Bratislava, Slovak Republic
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38 Bratislava, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, 040 01 Košice, Slovak Republic
| |
Collapse
|
2
|
Buck A, Wang T, Baig SS, Majid A, Ali AN. Role of remote ischaemic conditioning in fracture healing and orthopaedic surgery-a systematic review and narrative synthesis. J Orthop Surg Res 2025; 20:448. [PMID: 40336073 PMCID: PMC12060424 DOI: 10.1186/s13018-025-05772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
INTRODUCTION Remote ischaemic conditioning (RIC) involves the use of controlled and transient ischemia and reperfusion cycles, commonly of the upper or lower limb, to mitigate cellular damage from ischaemic events. Studies have demonstrated that RIC may have anti-inflammatory and cardiovascular protective effects and thus could represent a novel therapeutic strategy to improve outcomes following orthopaedic surgery. This review aimed to comprehensively describe the current pre-clinical and clinical evidence for RIC in orthopaedics. METHODS MEDLINE and EMBASE via OVID (1966-March 2024) were searched using a systematic search strategy for randomised controlled trials (RCTs) investigating the effects of RIC on fracture, bone healing, and orthopaedics. Both pre-clinical and clinical RCTs were included. RESULTS Three pre-clinical RCTs (comprising of 198 rats in models of experimental fracture) met the inclusion criteria. These showed that RIC was associated with enhanced callus formation (volume and biomechanical strength) post-fracture, reduced oxidative stress and upregulated osteoblastic activity. Sixteen clinical RCTs, involving 628 patients, investigated RIC in 6 different elective orthopaedic procedures (knee, lower limb, cervical, shoulder, general, hip fracture). RIC protocols varied in cycle frequency, duration, and pressure, but all were given as a single dose at induction of anaesthesia. Significant results included reductions in oxidative stress, improved cerebral and peripheral oxygenation, and reduced pain scores and analgesia use. Only 1 study (n = 648) evaluated RIC in acute hip fracture and demonstrated an early cardioprotective effect. CONCLUSION The potential therapeutic effects of RIC in orthopaedic surgery is supported by preliminary evidence from pre-clinical and clinical studies. Trials to date are largely small but warrant investigation in well-powered multicentre RCTs. There are still many unanswered questions about the optimal RIC parameters (cuff pressure, frequency and duration) in orthopaedic surgery and determining which patients may benefit most from this therapy.
Collapse
Affiliation(s)
- Alison Buck
- MRes, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield, Sheffield, UK
| | - Tao Wang
- Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Sheharyar S Baig
- Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Ali N Ali
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute of Translational Neuroscience, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield, S10 2 JF, UK.
| |
Collapse
|
3
|
Whitaker-Hilbig AA, Nguyen JN, Wietrzny A, Merkow G, Tarima S, Klevenow E, Nelson L, Hyngstrom AS, Durand MJ. Effects of ischemic conditioning on microvascular reactivity to single passive limb movement in young adults: a pilot study. Eur J Appl Physiol 2025:10.1007/s00421-025-05717-1. [PMID: 39984737 DOI: 10.1007/s00421-025-05717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
PURPOSE Single passive limb movement (sPLM) of the lower extremity is a simple and clinically relevant measure of the microvascular vasodilatory response to movement. A promising stimulus to improve microvascular health is ischemic conditioning (IC). We examined whether a single session of IC could improve microvascular reactivity to sPLM in young adults. METHODS This was a blinded, crossover, randomized clinical trial. Participants were seated in an isokinetic dynamometer that passively moved the knee 90° at a frequency of 1 Hz while superficial femoral artery leg blood flow (LBF) was measured. The absolute and the relative peak changes in LBF were calculated as the difference from baseline. The time to peak was calculated from the start of sPLM to peak LBF. The total area under the curve (AUC) was the sum of LBF above baseline during the hyperemic response. For IC, the cuff was placed around the dominant thigh and repetitively inflated (225 mmHg) for 5 min, then deflated for 5 min (total 45 min). For sham IC, the cuff was inflated to 25 mmHg. The sPLM response was re-assessed ten minutes after IC. RESULTS Twelve individuals completed the study (age 27 ± 3 years, 50% female). When controlling for resting LBF, heart rate, and sex, there was an interaction effect for absolute and relative peak change in LBF (p ≤ 0.048) but not time to peak or total AUC (p ≥ 0.17). CONCLUSION We show an acute bout of IC may improve the peak vasodilatory response to sPLM, potentially due to "preconditioning" the microvasculature.
Collapse
Affiliation(s)
- Alicen A Whitaker-Hilbig
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer N Nguyen
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Amanda Wietrzny
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gabriel Merkow
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Sergey Tarima
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emilie Klevenow
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | | | | | - Matthew J Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Kotorová K, Končeková J, Bona M, Bonová P. New alternative approaches to stroke treatment: the blood cell-derived secretome shows promise in individuals with obesity. Metab Brain Dis 2024; 40:56. [PMID: 39641824 PMCID: PMC11624225 DOI: 10.1007/s11011-024-01491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Ischaemic tolerance induced by remote ischaemic conditioning (RIC) has been extensively demonstrated in several preclinical models of cerebral ischaemia. However, animals with common stroke-related comorbidities do not benefit from the recent advances of RIC. Therefore, we investigated two alternative approaches for obese animals with stroke: (1) the efficacy of an additional round of the standard RIC protocol, and (2) the paracrine potential of the blood cell-derived secretome derived from RIC-induced healthy young rats. We found that a second round of remote ischaemic postconditioning (RIPostC) stimulus reduced neurodegeneration and exerted antioxidant effects but failed to decrease the infarct volume and alter glutamate homeostasis. However, when obese rats were administered the secretome from healthy, young RIC-stimulated rats, they exhibited improved neurological post-stroke outcomes. Intravenous administration of the tolerant secretome activated several endogenous mechanisms, including a reduction in the infarct volume and neurodegeneration in the penumbra. Furthermore, the blood cell-derived secretome accelerated brain-to-blood glutamate efflux in obese rats, and demonstrated antioxidant properties that may have contributed to the induction of tolerance in obese rats with stroke. These findings indicate that the blood cell-derived secretome has unique abilities and represents a new potential treatment for individuals with obesity and ischaemic stroke.
Collapse
Affiliation(s)
- Klaudia Kotorová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Neurobiology, Soltesovej 4-6, 040 01, Košice, Slovak Republic
| | - Jana Končeková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Neurobiology, Soltesovej 4-6, 040 01, Košice, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Košice, 040 01, Slovak Republic
| | - Petra Bonová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Neurobiology, Soltesovej 4-6, 040 01, Košice, Slovak Republic.
| |
Collapse
|
5
|
Abstract
Remote ischemic conditioning (RIC) is a therapeutic strategy to protect a vital organ like the brain from ischemic injury through brief and repeat cycles of ischemia and reperfusion in remote body parts such as arm or leg. RIC has been applied in different aspects of the stroke field and has shown promise. This narrative review will provide an overview of how to implement RIC in stroke patients, summarize the clinical evidence of RIC on stroke recovery, and discuss unresolved questions and future study directions.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Clinical Neurosciences, University of Calgary, HMRB Room 103, 3280 Hospital Drive, NW Calgary, Alberta, Canada T2N 4Z6; Department of Neurology, National Taiwan University Hospital, No.1, Changde Street, Zhongzheng District, Taipei City 100229, Taiwan (R.O.C.)
| | - Aravind Ganesh
- Department of Clinical Neurosciences, University of Calgary, HMRB Room 103, 3280 Hospital Drive, NW Calgary, Alberta, Canada T2N 4Z6.
| |
Collapse
|
6
|
Končekova J, Kotorova K, Gottlieb M, Bona M, Bonova P. Remote Ischaemic Preconditioning Accelerates Brain to Blood Glutamate Efflux via EAATs-mediated Transport. Neurochem Res 2023; 48:3560-3570. [PMID: 37528283 PMCID: PMC10584753 DOI: 10.1007/s11064-023-04002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Remote ischaemic conditioning (RIC) becomes an attractive strategy for the endogenous stimulation of mechanisms protecting neurons against ischaemia. Although the processes underlying the RIC are not clearly understood, the homeostasis of glutamate seems to play an important role. The present study is focused on the investigation of the brain to blood efflux of glutamate in a condition mimicking ischaemia-mediated excitotoxicity and remote ischaemic preconditioning (RIPC). The animals were pre-treated with a hind-limb tourniquet one hour before the intraventricular administration of glutamate and its release was monitored as the concentration of glutamate/glutathione in blood and liquor for up to 1 h. The transport mediated by excitatory amino acid transporters (EAATs) was verified by their inhibition with Evans Blue intraventricular co-administration. RIPC mediated the efflux of glutamate exceeding from CSF to blood in the very early stage of intoxication. As a consequence, the blood level of glutamate rose in a moment. EAATs inhibition confirmed the active role of glutamate transporters in this process. In the blood, elevated levels of glutamate served as a relevant source of antioxidant glutathione for circulating cells in RIPC-treated individuals. All of those RIPC-mediated recoveries in processes of glutamate homeostasis reflect the improvement of oxidative stress, suggesting glutamate-accelerated detoxication to be one of the key mechanisms of RIPC-mediated neuroprotection.
Collapse
Affiliation(s)
- Jana Končekova
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01 Slovak Republic
| | - Klaudia Kotorova
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01 Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01 Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Košice, 040 01 Slovak Republic
| | - Petra Bonova
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01 Slovak Republic
| |
Collapse
|
7
|
Moyle DB, Kudiersky MN, Totton MN, Sassani DM, Nichols DS, Jenkins DT, Redgrave DJ, Baig DS, Nair DKPS, Majid PA, Ali DAN. Remote ischaemic conditioning for fatigue after stroke (RICFAST): A pilot randomised controlled trial. J Stroke Cerebrovasc Dis 2023; 32:107420. [PMID: 37832270 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Post stroke fatigue (PSF) affects 50 % of stroke survivors, and can be disabling. Remote ischaemic conditioning (RIC), can preserve mitochondrial function, improve tissue perfusion and may mitigate PSF. This pilot randomised controlled trial evaluates the safety and feasibility of using RIC for PSF and evaluated measures of cellular bioenergetics. METHODS 24 people with debilitating PSF (7 item Fatigue Severity Score, FSS-7 > 4) were randomised (1:1) in this single-centre phase 2 study to RIC (blood pressure cuff inflation around the upper arm 200 mmHg for 5 min followed by 5 min of deflation), or sham (inflation pressure 20 mmHg), repeated 4 cycles, 3 times per week for 6 weeks. Primary outcomes were safety, acceptability, and compliance. Secondary outcomes included FSS-7, 6 min walking test (6MWT), peak oxygen consumption (V̇O2peak), ventilatory anaerobic threshold (VAT), and muscle adenosine triphosphate (ATP) content measured using 31-phosphorous magnetic resonance spectroscopy of tibialis anterior. RESULTS RIC was safe (no serious adverse events, adverse events mild) and adherence excellent (91 % sessions completed). Exploratory analysis revealed lower FSS-7 scores in the RIC group compared to sham at 6 weeks (between group difference FSS-7 -0.7, 95 %CI -2.0 to 0.6), 3 months (-1.0, 95 %CI -2.2 to 0.2) and 6 months (-0.9, 95 %CI -2.0 to 0.2). There were trends towards increased VAT, increased muscle ATP content and improved 6MWT in the RIC group. DISCUSSION RIC is safe and acceptable for people with PSF and may result in clinically meaningful improvements in fatigue and muscle bioenergetics that require further investigation in larger studies.
Collapse
Affiliation(s)
| | | | | | - Dr Matilde Sassani
- Translational Brain Science, Institute of Metabolism and Systems Research, UK
| | | | - Dr Tom Jenkins
- Sheffield Institute for Translational Neurology, UK; Royal Perth Hospital, Western Australia, UK
| | | | | | | | | | - Dr Ali N Ali
- Sheffield Teaching Hospitals NIHR Biomedical Research Centre, University of Sheffield, UK.
| |
Collapse
|
8
|
Nair R, Sarmiento R, Sheriff A, Shuaib A, Buck B, Gauthier M, Mushahwar V, Ferguson-Pell M, Kate M. Assessment of remote ischemic conditioning delivery with optical sensor in acute ischemic stroke: Randomised clinical trial protocol. PLoS One 2023; 18:e0284879. [PMID: 37141237 PMCID: PMC10159200 DOI: 10.1371/journal.pone.0284879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Remote ischemic conditioning (RIC) is delivered by a blood pressure cuff over the limb, raising pressure 50 mmHg above the systolic blood pressure, to a maximum of 200 mmHg. The cuff is inflated for five minutes and then deflated for five minutes in a sequential ischemia-reperfusion cycle 4-5 times per session. Elevated pressure in the limb may be associated with discomfort and consequently reduced compliance. Continuous assessment of relative blood concentration and oxygenation with a tissue reflectance spectroscopy (a type of optical sensor device) placed over the forearm during the RIC sessions of the arm will allow us to observe the effect of inflation and deflation of the pressure cuff. We hypothesize, in patients with acute ischemic stroke (AIS) and small vessel disease, RIC delivered together with a tissue reflectance sensor will be feasible. METHODS The study is a prospective, single-center, randomized control trial testing the feasibility of the device. Patients with AIS within 7 days from symptoms onset; who also have small vessel disease will be randomized 2:1 to intervention or sham control arms. All patients randomized to the intervention arm will receive 5 cycles of ischemia/reperfusion in the non-paralyzed upper limb with a tissue reflectance sensor and patients in the sham control arm will receive pressure by keeping the cuff pressure at 30 mmHg for 5 minutes. A total of 51 patients will be randomized, 17 in the sham control arm and 34 in the intervention arm. The primary outcome measure will be the feasibility of RIC delivered for 7 days or at the time of discharge. The secondary device-related outcome measures are fidelity of RIC delivery and the completion rate of intervention. The secondary clinical outcome includes a modified Rankin scale, recurrent stroke and cognitive assessment at 90 days. DISCUSSION RIC delivery together with a tissue reflectance sensor will allow insight into the blood concentration and blood oxygenation changes in the skin. This will allow individualized delivery of the RIC and improve compliance. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05408130, June 7, 2022.
Collapse
Affiliation(s)
- Radhika Nair
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Sarmiento
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Asif Sheriff
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ashfaq Shuaib
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Brian Buck
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Michel Gauthier
- Department of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Vivian Mushahwar
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Ferguson-Pell
- Department of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mahesh Kate
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Understanding Acquired Brain Injury: A Review. Biomedicines 2022; 10:biomedicines10092167. [PMID: 36140268 PMCID: PMC9496189 DOI: 10.3390/biomedicines10092167] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 01/19/2023] Open
Abstract
Any type of brain injury that transpires post-birth is referred to as Acquired Brain Injury (ABI). In general, ABI does not result from congenital disorders, degenerative diseases, or by brain trauma at birth. Although the human brain is protected from the external world by layers of tissues and bone, floating in nutrient-rich cerebrospinal fluid (CSF); it remains susceptible to harm and impairment. Brain damage resulting from ABI leads to changes in the normal neuronal tissue activity and/or structure in one or multiple areas of the brain, which can often affect normal brain functions. Impairment sustained from an ABI can last anywhere from days to a lifetime depending on the severity of the injury; however, many patients face trouble integrating themselves back into the community due to possible psychological and physiological outcomes. In this review, we discuss ABI pathologies, their types, and cellular mechanisms and summarize the therapeutic approaches for a better understanding of the subject and to create awareness among the public.
Collapse
|
10
|
Ishizuka K, Hoshino T, Toi S, Mizuno T, Hosoya M, Saito M, Sato Y, Yagita Y, Todo K, Sakaguchi M, Ohashi T, Maruyama K, Hino S, Honma Y, Doijiri R, Yamagami H, Iguchi Y, Hirano T, Kimura K, Kitazono T, Kitagawa K. Remote ischemic conditioning for acute ischemic stroke part 2: Study protocol for a randomized controlled trial. Front Neurol 2022; 13:946431. [PMID: 36003294 PMCID: PMC9393485 DOI: 10.3389/fneur.2022.946431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Remote ischemic conditioning (RIC) refers to the application of repeated short periods of ischemia intended to protect remote areas against tissue damage during and after prolonged ischemia. Aim We aim to evaluate the efficacy of RIC, determined by the modified Rankin Scale (mRS) score at 90 days after stroke onset. Design and methods This study is an investigator-initiated, multicenter, prospective, randomized, open-label, parallel-group clinical trial. The sample size is 400, comprising 200 patients who will receive RIC and 200 controls. The patients will be divided into three groups according to their National Institutes of Health Stroke Scale score at enrollment: 5–9, mild; 10–14, moderate; 15–20, severe. The RIC protocol will be comprised of four cycles, each consisting of 5 min of blood pressure cuff inflation (at 200 mmHg or 50 mmHg above the systolic blood pressure) followed by 5 min of reperfusion, with the cuff placed on the thigh on the unaffected side. The control group will only undergo blood pressure measurements before and after the intervention period. This trial is registered with the UMIN Clinical Trial Registry (https://www.umin.ac.jp/: UMIN000046225). Study outcome The primary outcome will be a good functional outcome as determined by the mRS score at 90 days after stroke onset, with a target mRS score of 0–1 in the mild group, 0–2 in the moderate group, and 0–3 in the severe group. Discussion This trial may help determine whether RIC should be recommended as a routine clinical strategy for patients with ischemic stroke.
Collapse
Affiliation(s)
- Kentaro Ishizuka
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- *Correspondence: Kentaro Ishizuka
| | - Takao Hoshino
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sono Toi
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Takafumi Mizuno
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Megumi Hosoya
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Moeko Saito
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yasuto Sato
- Department of Public Health, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yoshiki Yagita
- Department of Stroke Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kenichi Todo
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Manabu Sakaguchi
- Department of Neurology, Osaka General Medical Center, Osaka, Japan
| | - Takashi Ohashi
- Department of Neurology, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Kenji Maruyama
- Department of Neurology, Toda Chuo General Hospital, Saitama, Japan
| | - Shuji Hino
- Department of Neurology, Saitama Red Cross Hospital, Saitama, Japan
| | - Yutaka Honma
- Department of Neurology, Showa General Hospital, Tokyo, Japan
| | - Ryosuke Doijiri
- Department of Neurology, Iwate Prefectural Central Hospital, Iwate, Japan
| | - Hiroshi Yamagami
- Department of Stroke Neurology, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Teruyuki Hirano
- Department of Stroke and Cerebrovascular Medicine, Kyorin University, Tokyo, Japan
| | - Kazumi Kimura
- Department of Neurology, Nippon Medical School, Tokyo, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- Kazuo Kitagawa
| |
Collapse
|
11
|
Markus HS. Thrombectomy, remote ischemic conditioning, and cerebral microbleeds in cognition. Int J Stroke 2022; 17:368-369. [PMID: 35350946 DOI: 10.1177/17474930221087576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|