1
|
Sanchez-Tarifa E, Alonso C, Perez I, García LA, Fernández-Fontelo A, Gómez-Duran O, García-Morante B, García-Vázquez FA, Hernández-Caravaca I. A field comparison study of two vaccine protocols against Erysipelothrix rhusiopathiae in two types of swine breeds in Spain. BMC Vet Res 2024; 20:461. [PMID: 39394571 PMCID: PMC11468219 DOI: 10.1186/s12917-024-04065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/07/2024] [Indexed: 10/13/2024] Open
Abstract
Erysipelas still causes large economic losses to pig industry. Maternal immunity is critical to prevent erysipelas in young animals, thus, intensive vaccination protocols or practices focused on the improvement of the maternally derived immunity could provide substantial benefits. The present study evaluates potential changes in antibodies levels in sows and their offspring using two types of tests (commercial ELISA, Ingenasa or rSpaA415 ELISA) when two different vaccination programs (before farrowing or after farrowing) against Erysipelothrix rhusiopathiae were applied to sows from Iberian (A) or conventional Large White-Landrace (B) pig farms. The results showed a statistical correlation between titers found in sows and their one-week old piglets in both tests. The overall mean of (log) antibody titers in farm B measured by the commercial ELISA test was significantly higher in pre-farrowing vaccinated sows compared to the post-farrowing vaccine protocol (p = 0.0278). Additionally, using the rSpaA415 ELISA test, the overall mean of (log) antibody titers was significantly higher in pre-farrowing sows (p = 0.0056) compared to sows following post-farrowing vaccine protocol (p = 0.0003) or non- vaccinated sows. None of the above-mentioned differences were found in farm A. The overall mean of (log) antibody titers in piglets from the pre-farrowing vaccination protocol was significantly higher than piglets from the post-farrowing vaccination protocol in farm A (p = 0.0059; rSpaA415 ELISA) and farm B (p = 0.0168 and p = 0.0098 for the commercial and rSpaA415 ELISA data, respectively). Additionally, higher proportion of piglets from pre-farrowing vaccinated sows remained seropositive during the post-weaning period (days 42 to 84) compared to piglets from non-vaccinated or post-farrowing vaccinated groups in both farms A and B.
Collapse
Affiliation(s)
- E Sanchez-Tarifa
- Boehringer Ingelheim Animal Health, Sant Cugat del Vallès, Barcelona, Spain
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - C Alonso
- Boehringer Ingelheim Vetmedica GmbH, AH Swine, Ingelheim, Germany
| | - I Perez
- Inga Food S.A., Tres Cantos, Spain
| | - L A García
- Alvettia Gestión y Control S.L., Talavera de la Reina, Spain
| | - A Fernández-Fontelo
- School of Business and Economics, Humboldt-Universität zu Berlin, Berlin, Germany
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - O Gómez-Duran
- Boehringer Ingelheim Vetmedica GmbH, AH Swine, Ingelheim, Germany
| | - B García-Morante
- Centcinc, C/Montserrat de Casanovas 105, Barcelona, 08032, Spain
| | | | - I Hernández-Caravaca
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, Campus de Sant Vicent del Raspeig. Ap. 99, Alicante, E-03080, Spain.
| |
Collapse
|
2
|
Wheat W, Chow L, Still-Brooks K, Moore-Foster R, Herman J, Hunter R, Garry F, Dow S. Immune modulatory effects of tulathromycin, gamithromycin, and oxytetracycline in cattle. BMC Vet Res 2024; 20:456. [PMID: 39385141 PMCID: PMC11462805 DOI: 10.1186/s12917-024-04254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 10/11/2024] Open
Abstract
Certain classes of antibiotics, including tetracyclines and macrolides, are known to exert immune suppressive effects in other species but the immune modulatory effects of these antibiotics have not been previously studied in cattle. To address this question, we investigated the effects of oxytetracycline, gamithromycin, and tulathromycin on T cell and macrophage responses to activation, using in vitro assays. In addition, we assessed the impact of these antibiotics on T cell responses in vivo following treatment of healthy cattle with currently recommended doses of each of the three antibiotics. We found that all 3 antibiotics markedly suppressed T cell proliferation in vitro at relevant therapeutic drug concentrations and significantly suppressed macrophage activation responses to LPS. In cattle treated with a single dose of each antibiotic, we observed significant suppression of T cell proliferation and cytokine production beginning as early as 6 h after administration, with increasing immune suppression observed at 48 h. Taken together, these results indicate that commonly used antibiotics in cattle exert significant immune modulatory activity, in addition to their antimicrobial activity. These off-target effects should be considered when using antibiotics for prophylaxis or metaphylaxis in high-risk dairy or beef cattle (192 words).
Collapse
Affiliation(s)
- W Wheat
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| | - L Chow
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - K Still-Brooks
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - R Moore-Foster
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - J Herman
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - R Hunter
- Hunter Cattle Co, Wheatland, WY, USA
| | - F Garry
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - S Dow
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
3
|
Shen X, Zhang A, Zhao R, Yin L, Yin D, Dai Y, Hou H, Wang J, Hu X, Pan X, Zhang D, Liu W, Liu Y, Zhan K. Effects of adding antibiotics to an inactivated oil-adjuvant avian influenza vaccine on vaccine characteristics and chick health. Poult Sci 2024; 103:104135. [PMID: 39106695 PMCID: PMC11343057 DOI: 10.1016/j.psj.2024.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024] Open
Abstract
During poultry immunization, antibiotics are typically added to inactivated oil-adjuvant avian influenza (AI) vaccines. Here, we evaluated the effects of adding ceftiofur, a third-generation cephalosporin, to an AI vaccine on vaccine stability and structure and on chick growth, immune efficacy, blood concentrations, biochemical and immunological indices, and gut microbiota. The results demonstrated that neither aqueous ceftiofur sodium nor ceftiofur hydrochloride oil emulsion formed a stable mixture with the vaccine. Adding ceftiofur formulations, particularly ceftiofur hydrochloride, at >4% significantly destabilized the vaccine's water-in-oil structures. Adding ceftiofur also increased vaccine malabsorption at the injection site; specifically, adding ceftiofur hydrochloride reduced H5N8 and H7N9 antibody titers after the first immunization (P < 0.05) and H7N9 antibody titers after the second immunization (P < 0.01). Serum drug concentrations did not differ significantly between the groups with ceftiofur sodium and hydrochloride addition. Ceftiofur addition increased postvaccination chick weight loss; compared with the vaccine alone, ceftiofur sodium-vaccine mixture increased chick weight significantly (P < 0.05). Ceftiofur addition also increased stress indices and reduced antioxidant capacity significantly (P < 0.05 or P < 0.01). Vaccination-related immune stress reduced gut microbiota diversity in chicks; ceftiofur addition reversed this change. AI vaccine immunization significantly reduced the relative abundance of Lactobacillus and Muribaculaceae but significantly increased that of Bacteroides and Eubacterium coprostanoligenes group. Ceftiofur addition restored the gut microbiota structure; in particular, ceftiofur hydrochloride addition significantly increased the abundance of the harmful gut microbes Escherichia-Shigella and Enterococcus, whereas ceftiofur sodium addition significantly reduced it. The changes in gut microbiota led to alterations in metabolic pathways related to membrane transport, amino acids, and carbohydrates. In conclusion, adding ceftiofur to the AI vaccine had positive effects on chick growth and gut microbiota modulation; however, different antibiotic concentrations and formulations may disrupt vaccine structure, possibly affecting vaccine safety and immunization efficacy. Thus, the addition of antibiotics to oil-adjuvant vaccines is associated with a risk of immunization failure and should be applied to poultry with caution.
Collapse
Affiliation(s)
- Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Anyun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ruihong Zhao
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Hongyan Hou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xiaomiao Hu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Danjun Zhang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Wei Liu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Zhan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China.
| |
Collapse
|
4
|
Vaccination Failures in Pigs-The Impact of Chosen Factors on the Immunisation Efficacy. Vaccines (Basel) 2023; 11:vaccines11020230. [PMID: 36851108 PMCID: PMC9964700 DOI: 10.3390/vaccines11020230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Infectious diseases that often lead to economic losses still pose a severe problem in the pig production sector. Because of increasing restrictions on antibiotic usage, vaccines may become one of the major approaches to controlling infectious diseases; much research has proved that they could be very efficient. Nevertheless, during their life, pigs are exposed to various factors that can interfere with vaccination efficacy. Therefore, in the present paper, we reviewed the influence of chosen factors on the pig immunisation process, such as stress, faecal microbiota, host genetics, the presence of MDAs, infections with immunosuppressive pathogens, and treatment with antibiotics and mycotoxins. Many of them turned out to have an adverse impact on vaccine efficacy.
Collapse
|
5
|
Feng H, Wang X, Zhang J, Zhang K, Zou W, Zhang K, Wang L, Guo Z, Qiu Z, Wang G, Xin R, Li J. Combined Effect of Shegandilong Granule and Doxycycline on Immune Responses and Protection Against Avian Infectious Bronchitis Virus in Broilers. Front Vet Sci 2021; 8:756629. [PMID: 34988139 PMCID: PMC8721878 DOI: 10.3389/fvets.2021.756629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/31/2021] [Indexed: 11/13/2022] Open
Abstract
Infectious bronchitis (IB) causes significant economic losses to commercial chicken farms due to the failures of vaccine immunization or incomplete protection. In this study, we evaluated the combination effect of Shegandilong (SGDL) granule (a traditional Chinese veterinary medicine) and doxycycline on the prevention of IBV infection and injury in the respiratory tract in broilers. A total of 126, 7-day-old broilers were randomly divided into four groups after vaccination. Group I served as a control. Broilers in Group II were given doxycycline, and Group III was given SGDL granule through drinking water. Broilers in Group IV were given SGDL granule and doxycycline by drinking water. Broilers in all groups were challenged with IBV through intraocular and intranasal routes at day 28. Results showed that the anti-IBV antibody level was higher in group IV compared with the level in other groups. Immunohistochemistry and ELISA results showed that an increase of immunoglobulin A (IgA) was observed in the trachea with the maximum level observed at day 14. In addition, SGDL granule + doxycycline effectively inhibited IBV replication and stopped IBV propagation from the trachea to the lung; modulated the mRNA expressions of IL-1β, IL-6, TNF-α, and IFN-γ; and extenuated the histopathology lesions in trachea and lung. These data imply that a combination of SGDL granule and doxycycline is effective in preventing IBV infection and respiratory tract injury in broilers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ruihua Xin
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
Vaccination of koalas during antibiotic treatment for Chlamydia-induced cystitis induces an improved antibody response to Chlamydia pecorum. Sci Rep 2020; 10:10152. [PMID: 32576914 PMCID: PMC7311432 DOI: 10.1038/s41598-020-67208-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Chlamydia infection and disease are endemic in free-ranging koalas. Antibiotics remain the front line treatment for Chlamydia in koalas, despite their rates of treatment failure and adverse gut dysbiosis outcomes. A Chlamydia vaccine for koalas has shown promise for replacing antibiotic treatment in mild ocular Chlamydia disease. In more severe disease presentations that require antibiotic intervention, the effect of vaccinating during antibiotic use is not currently known. This study investigated whether a productive immune response could be induced by vaccinating koalas during antibiotic treatment for Chlamydia-induced cystitis. Plasma IgG antibody levels against the C. pecorum major outer membrane protein (MOMP) dropped during antibiotic treatment in both vaccinated and unvaccinated koalas. Post-treatment, IgG levels recovered. The IgG antibodies from naturally-infected, vaccinated koalas recognised a greater proportion of the MOMP protein compared to their naturally-infected, unvaccinated counterparts. Furthermore, peripheral blood mononuclear cell gene expression revealed an up-regulation in genes related to neutrophil degranulation in vaccinated koalas during the first month post-vaccination. These findings show that vaccination of koalas while they are being treated with antibiotics for cystitis can result in the generation of a productive immune response, in the form of increased and expanded IgG production and host response through neutrophil degranulation.
Collapse
|
7
|
Opriessnig T, Forde T, Shimoji Y. Erysipelothrix Spp.: Past, Present, and Future Directions in Vaccine Research. Front Vet Sci 2020; 7:174. [PMID: 32351978 PMCID: PMC7174600 DOI: 10.3389/fvets.2020.00174] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Erysipelothrix spp. comprise a group of small Gram-positive bacteria that can infect a variety of hosts including mammals, fish, birds, reptiles and insects. Among the eight Erysipelothrix species that have been described to date, only Erysipelothrix rhusiopathiae plays a major role in farmed livestock where it is the causative agent of erysipelas. E. rhusiopathiae also has zoonotic potential and can cause erysipeloid in humans with a clear occupational link to meat and fish industries. While there are 28 known Erysipelothrix serovars, over 80% of identified isolates belong to serovars 1 or 2. Vaccines to protect pigs against E. rhusiopathiae first became available in 1883 as a response to an epizootic of swine erysipelas in southern France. The overall vaccine repertoire was notably enlarged between the 1940s and 1960s following major outbreaks of swine erysipelas in the Midwest USA and has changed little since. Traditionally, E. rhusiopathiae serovar 1a or 2 isolates were inactivated (bacterins) or attenuated and these types of vaccines are still used today on a global basis. E. rhusiopathiae vaccines are most commonly used in pigs, poultry, and sheep where the bacterium can cause considerable economic losses. In addition, erysipelas vaccination is also utilized in selected vulnerable susceptible populations, such as marine mammals in aquariums, which are commonly vaccinated at regular intervals. While commercially produced erysipelas vaccines appear to provide good protection against clinical disease, in recent years there has been an increase in perceived vaccine failures in farmed animals, especially in organic outdoor operations. Moreover, clinical erysipelas outbreaks have been reported in animal populations not previously considered at risk. This has raised concerns over a possible lack of vaccine protection across various production species. This review focuses on summarizing the history and the present status of E. rhusiopathiae vaccines, the current knowledge on protection including surface antigens, and also provides an outlook into future directions for vaccine development.
Collapse
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Taya Forde
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Yoshihiro Shimoji
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
8
|
Dietary supplementation with spray-dried porcine plasma has prebiotic effects on gut microbiota in mice. Sci Rep 2020; 10:2926. [PMID: 32076042 PMCID: PMC7031359 DOI: 10.1038/s41598-020-59756-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
In animal models of inflammation and in farm animals, dietary inclusion of spray-dried porcine plasma (SDP) reduces mucosal inflammation. Here, we study whether these effects could be mediated by changes in the intestinal microbiota and if these changes are similar to those induced by oral antibiotics. Weaned 21-day-old C57BL/6 mice were divided into 3 groups: the CTL group, fed the control diet; the COL group, administered low doses of neomycin and colistin; and the SDP group, supplemented with 8% SDP. After 14 days, analysis of the fecal microbiome showed that the microbiota profiles induced by SDP and the antibiotics were very different, thus, SDP has prebiotic rather than antibiotic effects. At the phylum level, SDP stimulated the presence of Firmicutes, considerably increasing the lactobacilli population. It also enhanced the growth of species involved in regulatory T-lymphocyte homeostasis and restoration of the mucosal barrier, as well as species negatively correlated with expression of pro-inflammatory cytokines. At the mucosal level, expression of toll-like receptors Tlr2, Tlr4 and Tlr9, and mucous-related genes Muc2 and Tff3 with regulatory and barrier stability functions, were increased. SDP also increased expression of Il-10 and Tgf-β, as well as markers of macrophages and dendritic cells eventually promoting an immune-tolerant environment.
Collapse
|
9
|
Phakhounthong K, Mukaka M, Dittrich S, Tanganuchitcharnchai A, Day NPJ, White LJ, Newton PN, Blacksell SD. The temporal dynamics of humoral immunity to Rickettsia typhi infection in murine typhus patients. Clin Microbiol Infect 2019; 26:781.e9-781.e16. [PMID: 31678231 PMCID: PMC7284305 DOI: 10.1016/j.cmi.2019.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES This study examined individuals with Rickettsia typhi infection in the Lao People's Democratic Republic (Lao PDR) to (a) investigate humoral immune dynamics; (b) determine the differences in reference diagnostic results and recommend appropriate cut-offs; (c) determine differences in immune response after different antibiotic treatments; and (d) determine appropriate diagnostic cut-off parameters for indirect immunofluorescence assay (IFA). METHODS Sequential serum samples from 90 non-pregnant, adults were collected at seven time-points (days 0, 7, 14, 28, 90, 180 and 365) as part of a clinical antibiotic treatment trial. Samples were tested using IFA to determine IgM and IgG antibody reciprocal end-point titres against R. typhi and PCR. RESULTS For all 90 individuals, reciprocal R. typhi IgM and IgG antibody titres ranged from <400 to ≥3200. The median half-life of R. typhi IgM was 126 days (interquartile range 36-204 days) and IgG was 177 days (interquartile range 134-355 days). Overall median patient titres for R. typhi IgM and IgG were significantly different (p < 0.0001) and at each temporal sample collection point (range p < 0.0001 to p 0.0411). Using Bayesian latent class model analysis, the optimal diagnostic cut-off reciprocal IFA titer on patient admission for IgM was 800 (78.6%, 95% CI 71.6%-85.2% sensitivity; 89.9%, 95% CI 62.5%-100% specificity), and for IFA IgG 1600 (77.3%; 95% CI 68.2%-87.6% sensitivity; 99%, 95% CI 95%-100% specificity). CONCLUSIONS This study suggests suitable diagnostic cut-offs for local diagnostic laboratories and other endemic settings and highlights antibody persistence following acute infection. Further studies are required to validate and define cut-offs in other geographically diverse locations.
Collapse
Affiliation(s)
- K Phakhounthong
- Lao-Oxford-Mahosot Hospital-Oxford Tropical Medicine Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - M Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - S Dittrich
- Lao-Oxford-Mahosot Hospital-Oxford Tropical Medicine Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic; Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | | | - N P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - L J White
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - P N Newton
- Lao-Oxford-Mahosot Hospital-Oxford Tropical Medicine Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic; Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - S D Blacksell
- Lao-Oxford-Mahosot Hospital-Oxford Tropical Medicine Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, UK.
| |
Collapse
|
10
|
Antibiotic Therapy Does Not Alter the Humoral Response to Vaccination for Porcine Circovirus 2 in Weaned Pigs. Vet Sci 2019; 6:vetsci6020051. [PMID: 31151211 PMCID: PMC6631623 DOI: 10.3390/vetsci6020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022] Open
Abstract
Recent reports suggest that antibiotic therapy may either reduce or enhance the immune response to various porcine vaccines. Based upon these findings, we asked if antibiotic therapy alters immune cell populations, as measured by flow cytometry and/or vaccine-specific humoral immunity, as measured by sample to positive (S/P) antibody ratios. Here, we investigated the immuno-modulatory effects of enrofloxacin, ceftiofur, and tulathromycin on the immune response to a Mycoplasma hyopneumoniae (M. hyopneumoniae) and porcine circovirus type 2 (PCV-2) combination vaccine in weaned pigs. Maternal antibody likely interfered with the induction of immunity to M. hyopneumoniae. Antibiotic administration did not affect immune cell populations, as assessed by flow cytometry and did not affect the induction of humoral immunity to PCV-2.
Collapse
|
11
|
Pomorska-Mól M, Kwit K, Czyżewska-Dors E, Pejsak Z. Tulathromycin enhances humoral but not cellular immune response in pigs vaccinated against swine influenza. J Vet Pharmacol Ther 2018; 42:318-323. [PMID: 30585339 DOI: 10.1111/jvp.12742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022]
Abstract
The effect of a standard, single dose therapy with tulathromycin was investigated on the postvaccinal humoral and cellular immune response in pigs vaccinated against swine influenza. Forty-five pigs, divided into 3 groups, were used (control not vaccinated (C, n = 15), control vaccinated (CV, n = 15), and experimentally received tulathromycin (TUL, n = 15)). For vaccination of pigs, an inactivated, commercial vaccine was used. Pigs from TUL group received single dose of tulathromycin intramuscularly, at the recommended dose (2.5 mg/kg body weight). Pigs from TUL and CV groups were vaccinated at 8 and 10 weeks of age. The specific humoral and cellular immune response against swine influenza virus (SIV) was evaluated. The results of present study showed that humoral postvaccinal response after vaccination against SIV can be modulated by treatment with tulathromycin. In pigs from TUL group, the significantly higher titers of anti-SIV-specific antibodies were observed 4 and 6 weeks after booster dose of vaccine. Simultaneously, T-cell-mediated immune response against SIV was not affected by tulathromycin. Our recent study confirmed the importance of defining the modulatory activity of tulathromycin because of its influence on the immune response to vaccines. Since the antibodies against hemagglutinin are crucial for the protection against SIV, the present observations should prompt further studies on the practical significance of recent results in terms of clinical implications (postvaccinal protection) in the field conditions.
Collapse
Affiliation(s)
- Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Krzysztof Kwit
- Department of Swine Diseases, National Veterinary Research Institute, Pulawy, Poland
| | | | - Zygmunt Pejsak
- University Centre of Veterinary Medicine JU -AU, Krakow, Poland
| |
Collapse
|
12
|
Gerber PF, MacLeod A, Opriessnig T. Erysipelothrix rhusiopathiae serotype 15 associated with recurring pig erysipelas outbreaks. Vet Rec 2018. [PMID: 29519854 PMCID: PMC5992361 DOI: 10.1136/vr.104421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Priscilla F Gerber
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.,Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | | | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
13
|
Czyżewska-Dors E, Kwit K, Pejsak Z, Pomorska-Mól M. Changes in circulating lymphocyte subpopulations in pigs receiving therapeutic doses of ceftiofur and tulathromycin. J Vet Res 2016. [DOI: 10.1515/jvetres-2016-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Introduction: The aim of the study was to evaluate the effect of administration of therapeutic doses of ceftiofur and tulathromycin on the circulating lymphocyte subpopulations in healthy pigs. Material and Methods: The study was conducted on thirty healthy 7- to 10-week-old pigs, assigned to three groups: the TUL group, injected with tulathromycin (n = 10); the CEF group, injected with ceftiofur (n = 10); and the C group, the control with no antibiotic administration (n = 10). Blood samples were collected before, during, and after treatment with antimicrobials. Lymphocyte subpopulations circulating in the blood were determined by immunostaining and flow cytometry analyses. Results: Following administration of a therapeutic dose of tulathromycin, there were no changes in the lymphocyte subpopulations circulating in blood. In contrast, administration of ceftiofur at the recommended dose decreased the absolute number of CD3+, CD21+, CD4+CD8-, CD4-CD8+, and double positive CD4CD8 cells. Conclusion: Results from the study indicate that ceftiofur possesses the ability to modulate the immune system in healthy pigs by decreasing lymphocyte subpopulations circulating in blood.
Collapse
Affiliation(s)
- Ewelina Czyżewska-Dors
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Krzysztof Kwit
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Zygmunt Pejsak
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | | |
Collapse
|